DOI QR코드

DOI QR Code

Lightweight Design of Brake Bracket for Composite Bogie Using Topology Optimization

위상 최적 설계를 통한 복합소재 대차프레임용 제동장치 브래킷의 경량화 연구

  • Lee, Woo Geun (Dept. of Railway System Engineering, University of Science and Technology) ;
  • Kim, Jung Seok (Convergence Transportation Technology Research Team, Korea Railroad Research Institute)
  • 이우근 (과학기술연합대학교대학원 철도시스템공학과) ;
  • 김정석 (한국철도기술연구원 첨단소재연구팀)
  • Received : 2014.06.10
  • Accepted : 2015.01.19
  • Published : 2015.03.01

Abstract

In this study, the lightweight design of a brake bracket for a composite bogie was studied by considering two brake bracket models with thicknesses of 12t and 9t, respectively. For achieving this goal, finite element analysis and topology optimization were conducted. Firstly, the largest cross-sectional areas of the vertical and horizontal plates of the brake bracket were selected as the design variables. As the constraint, the Z-axis displacement of the brake bracket was increased by 2.5 units from the initial displacement value. The minimum volume fraction of the design regions was chosen as the objective function. The full model comprised a composite bogie frame and brackets attached together. However, to reduce the analysis time, 1D beam elements were used instead of the composite bogie frame by ensuring its equivalence with the full model. The result revealed that the weights of the 12t and 9t models of the brake bracket were reduced to 60 kg and 31 kg, respectively.

본 연구에서는 위상 최적 설계 기법을 활용하여 복합소재 대차프레임의 제동장치 브래킷 경량 설계를 수행하였다. 제동장치 브래킷은 12t 와 9t 로 각각 두 가지 모델을 대상으로 하였다. 위상최적화시 설계영역은 단면적이 가장 넓은 수직면과 수평면으로 설정하였다. 제한조건은 제동장치 브래킷의 Z 축의 변위 값을 초기 변위 값보다 2.5% 증가이고, 목적함수는 제동장치 브래킷의 질량 최소화로 하였다. 또한 최적화 계산 시간을 줄이기 위해 대차프레임을 생략하고 대차프레임 대신 1D beam 요소를 적용하여 Z 축 변위를 기준으로 전체모델과 동일하게 등가시켜 두 모델간의 상관성을 확보 하였다. 그 결과 12t 모델은 60kg, 9t 모델은 31kg 감소하였고, 최적화 모델의 유한요소해석을 통하여 안전성을 검증하였다.

Keywords

References

  1. Yang, R. J. and Chahande, A. I. 1995, "Automotive Applications of Topology Optimization," Structural Optimization, Vol. 9, pp. 245-249. https://doi.org/10.1007/BF01743977
  2. Fukushima, J., Suzuki K. and Kikuchi, N., 1992 "Shape and Topology Optimization of a Car Body with Multiple Loading Condition," SAE paper, No. 920777.
  3. Hong, S. K. and Hong, J. K. and Kim, T. H., 2012, "Lightweight Design of a Vertical Articulated Robot Using Topology Optimization," 2012, Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 12, pp. 1683-1688. https://doi.org/10.3795/KSME-A.2012.36.12.1683
  4. HyperWorks 10 manual, 2010, Radioss for Linnear Analysis Training Manual and Optistruct Optimization Training, Altair Engineering
  5. Lee, W. G., Kim, J. S., Yoon, H. J., Shin, K. B. and Seo, S. I., 2013, "Structural Behavior Evaluation of Tjoints of the Composite Bogie Frame Under Bending," International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 1, pp. 129-135. https://doi.org/10.1007/s12541-013-0018-x
  6. Kim, J. S., Lee, W. G. and Kim, I. K., 2013, "Manufacturing and Testing of a GFRP Composite Bogie Frame with Straight Side Beam Members," Journal of Mechanical Science and Technology, Vol. 27, No. 9, pp. 2761-2767. https://doi.org/10.1007/s12206-013-0722-6
  7. Kim, J. S., Shin, K. B., Yoon, H. J. and Lee, W. G., 2012, "Durability Evaluation of a Composite Bogie Frame with Bow-Shaped Side Beams," Journal of Mechanical Science and Technology, Vol. 26, No. 2, pp. 531-536. https://doi.org/10.1007/s12206-011-1034-3
  8. Bendson M. P., and Kikuchi N., 1988, "Generating Optimal Topologies in Structural Design Using a Homogenization Method," Computational Methods in Applied Mechanics and Engineering, Vol. 71, pp. 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  9. Chiandussi, G., Gaviglio, I. and Ibba, A., 2004, "Topology Optimization of an Automotive Component Without Final Volume Constraint Specification," Advances in Engineering Software, Vol. 35, pp. 609-617. https://doi.org/10.1016/j.advengsoft.2003.07.002
  10. Fredricsion, H., 2005, "Topology Optimization of Frame Structures - Joint Penalty and Material Selection," Structural and Multidisciplinary Optimization, Vol. 30, No 3, pp. 193-200. https://doi.org/10.1007/s00158-005-0515-3
  11. Jang, G. W., Yoon, M. S. and Park, J. H., "Lightweight Flatbed Trailer Design by Using Topology and Thickness Optimization," Structural and Multidisciplinary Optimization, Vol. 41, No. 2, pp. 295-307. https://doi.org/10.1007/s00158-009-0409-x
  12. Mlejnek, H. P., and Schirrmacher, R., 1993, "An Engineering Approach to Optimal Material Distribution and Shape Finding," Computational Methods in Applied Mechanics and Engineering, Vol. 106, pp. 1-26. https://doi.org/10.1016/0045-7825(93)90182-W
  13. Wang, S. M., and Moon, H. K. and Kim, Y. S., 2000, "Application of Topology Optimization," Journal of KSME, Vol. 40, No. 3, pp. 34-36.
  14. Park, J. W., Kang, D. S., Tak, S. M., Kim, J. K., Song, K. S., Lee, S. S. and Park, J. W., 2010, "Topology Optimization of a Transmission Case,"Journal of the Korean Society for Precision Engineering, Vol. 27, No. 2, pp. 57-62.
  15. Japanese Industrial Standard (JIS) E 7105, 1994, "Test Methods for Static Load of Body Structures of Railway Rolling Stock."
  16. UIC Code 615-4, 1994, "Motive Power Units Bogies and Running Gear Bogie Frame Structure Strength Tests."