• Title/Summary/Keyword: 대중교통 우선신호

Search Result 12, Processing Time 0.022 seconds

A Development of the Traffic Signal Progression Model for Tram and Vehicles (간선도로 트램 전용차로에서 트램과 일반차량을 위한 신호최적화 모형 개발)

  • Lee, In-Kyu;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.3
    • /
    • pp.280-292
    • /
    • 2014
  • A tram has been the focus of a new public transportation that can solve a traffic jam, decreasing of public transit usage and environmental problem in recent years. This study aims to develop a signal optimization model for considering the traffic signal progression of tram and vehicles, when they are operated simultaneously in the same signalized intersections. This research developed the KS-SIGNAL-Tram model to obtain a minimum tram bandwidth and to minimize a vehicle's delay to perform a tram passive signal priority, it is based on the KS-SIGNAL model and is added to the properties of a tram and it's system. We conducted a micro simulation test to evaluate the KS-SIGNAL-Tram model, it showed that the developed optimization model is effective to prevent a tram's stop on intersection, to reduce a tram's travel time and vehicle's delay.

Establishment of Bus Priority Signal in Real-Time Traffic Signal Control (실시간신호제어시스템에서의 버스우선신호 알고리즘 정립 (중앙버스 전용차로를 대상으로))

  • Han, Myeong-Ju;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.101-114
    • /
    • 2006
  • Recently due to the increase of cars and city life, the traffic congestion has worsened. It Is particularly worse in the center of the metropolis. Within the general public means, the public transport buses have the advantage of being more cheap, accessible and mobile. But as there is no separate lane for buses, the collision of cars and buses are creating damage to public service. In order to solve this situation, the bus priority signal system has been introduced to reduce the bus travel time and improve its services. The purpose of this study is to establish bus priority signal algorithm which builds bus efficiency under the real-time traffic signal control system and to analyze the effect of it. As the green time was calculated against real time (under the real-time traffic signal control system), compared to existing bus priority signal there was a reduction in cross street loss. The modified cycle was used to maintain signal progression. A case study was carried out using VISSIM simulation model. In result of this study, we found that there was a decrease in bus travel time despite some evidence of car delays and compared to existing bus priority signal the delay of dishonor could be reduced dramatically. The analysed result of person delay using MOE, is that there is evidence that when bus priority signal is in effect, the person delay is reduced.

A Study on Active Priority Control Strategy for Traffic Signal Progression of Tram (트램의 연속통행을 위한 능동식 우선신호 전략 연구)

  • Lee, In-Kyu;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.25-37
    • /
    • 2014
  • Recently, our local governments are conducting the introduction of tram system because it is recognized as an effective public transit that can solve a traffic jam in downtown, decreasing public transit share and environmental issues in world wide cities. We developed the Active Priority Control Strategy to efficiently operate a tram in our existing traffic signal system. This study organized the tram system for operating the Active Priority Signal Control, developed the algorithm that calculates a tram-stop dwell time in order to pass the downstream intersection without a stop. The dwell time is determined by arrival time at tram-stop, downstream signal time, and the location of a opposite tram, it can be reduced by choosing the optimal one among Signal Priority Controls. Using the VISSIM and VISVAP model, we conducted a simulation test for the city of Chang-won that it is expected to install a tram system. It showed that a developed signal control strategy is effective to prevent a tram's stop in intersections, to reduce a tram's travel time.

Signal Timing Calculation Model of Transit Signal Priority using Shockwave Theory (충격파 이론을 이용한 대중교통 우선신호의 신호시간 산정모형)

  • Park, Sang Sup;Cho, Hye Rim;Kim, Youngchan;Jeong, Youngje
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.897-905
    • /
    • 2015
  • This research suggested the traffic signal calculation model of active transit signal priority using a shockwave model. Using this signal priority timing optimization model, the shockwave area is computed under the condition of Early Green and Green Extension among active transit signal priority techniques. This study suggested the speed estimation method of backward shockwave using average travel time and intersection passing time. A shockwave area change is calculated according to signal timing change of transit signal priority. Moreover, this signal timing calculation model could determine the optimal signal priority timings to minimize intersection delay of general vehicles. A micro simulation analysis using VISSIM and its user application model ComInterface was applied. This study checked that this model could calculate the signal timings to minimize intersection delay considering saturation condition of traffic flow. In case studies using an isolated intersection, this study checked that this model could improve general vehicle delay of more over ten percentage as compared with equality reduction strategy of non-priority phases. Recently, transit priority facilities are spreading such as tram, BRT and median bus lane in Korea. This research has an important significance in that the proposed priority model is a new methodology that improve operation efficiency of signal intersection.

Control Strategy of Transit Signal Priority by S-BRT Driveway (S-BRT 주행로별 대중교통 우선신호 제어 전략)

  • Kim, Minji;Han, Yohee;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.78-89
    • /
    • 2022
  • Super - Bus Rapid Transit (S-BRT), adding the advantages of urban railroads to BRT, has emerged to solve the problem of low speed and reliability of the existing BRT. Notably, the S-BRT driveway is classified into exclusive lanes and roads, as BRT, in the domestic guidelines. However, S-BRT and BRT have different operating goals and characteristics, so it is necessary to systematize the S-BRT driveway. Therefore, this study classified an S-BRT driveway into exclusive lane, shared lane with overtaking lane, and shared lane without overtaking lane based on domestic conditions. Subsequently, a control strategy for transit signal priority in each driveway was presented by the study based on the characteristics of the driveway to achieve the S-BRT target service level. Finally, the S-BRT target service level was almost achieved, and the travel speed was high and increased in the order respectively in the exclusive lane, shared lane with overtaking lane, and shared lane without overtaking lane in the study. Hence, it is important to operate a transit signal priority considering the characteristics of each driveway when operating the S-BRT. In essence, this study is expected to be used as a reference for driveway design and transit signal priority operation when introducing S-BRT in each local government in the future.

Optimal Signal Times for Active Bus Signal Priority on Median Bus Lane Using Deterministic Delay Model (중앙버스전용차로상에서 결정적 지체모형을 이용한 능동형 버스우선신호의 최적 신호시간 산출방안)

  • Kim, Tae-Woon;Jeong, Young-Je;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.15-25
    • /
    • 2014
  • Bus signal priority is a name for various techniques to speed up bus public transport services at intersections with traffic signals. In this study propose methodology to optimize signal times for Early green, Green extension out of the active bus signal priority using deterministic delay model in isolated intersection on median bus lane. Fluctuation is found in the vehicle delay and person delay in the event that using this methodology redistributed to green time and checking slack green time is correct value by sensitivity analysis. As a result of the study, car delay is increased a little and person delay is decreased. As a result of slack green time sensitivity, delay is not much in it if variation of slack green time under 30%. But this methodology effectiveness is under claimed capacity if variation of slack green time over 30%.

Analysis of Bus Signal Priority Effect by BRT Stop Types: Focusing on Hannuri-daero, Sejong (BRT 정류장 형태에 따른 버스 우선 신호 효과 분석: 세종시 한누리대로를 중심으로)

  • Kim, Minji;Han, Yohee;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.20-33
    • /
    • 2021
  • Modern society is steadily implementing policies to encourage public transportation to cope with the growing traffic demand on limited roads. The expectation is rising for transit signal priority to ensure the speed of buses as the installation of the bus rapid transit(BRT) expands nationwide to secure the competitiveness of buses. On the other hand, the form of BRT stops without considering some aspects of bus operation may increase the number of stops on the bus, thereby reducing the effectiveness of bus signal priority applications. This study suggests the type of bus stop to increase the operation efficiency of buses by analyzing the bus signal priority effect according to the BRT station type using Hannuri-daero, Sejong. The bus signal priority is used to maximize the two-way bandwidth of passenger cars and buses. As a result of the application, the effectiveness of the bus signal priority at the stop causing the double stop of the bus was reduced drastically, and the efficiency of the bus signal priority was increased significantly after improvement. These results are expected to be used as basic data in the form of proper bus stops considering the aspects of traffic operation when designing BRT stops in new towns in the future.

A Study on the Active Transit Signal Priority Control Algorithm based on Bus Demand using UTIS (UTIS를 활용한 수요 기반의 능동형 버스우선신호 제어 알고리즘에 관한 연구)

  • Hong, Gyeong-Sik;Jeong, Jun-Ha;An, Gye-Hyeong;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.107-116
    • /
    • 2011
  • In this paper, we implement an algorithm of transit signal priority control that not only maximizes service quality and efficiency of bus, but also minimizes the control delay of passenger cars using UTIS currently being deployed and operated in Seoul national capital area. For this purpose, we propose an algorithm that coordinates the strength of TSP by estimating bus demand. Typically, the higher the strength of TSP is on main street, the bigger the control delay is on the cross street. Motivated by this practical difficulty, we proposes an algorithm that coordinates TSP's strength by checking the degree of saturation of cross street. Also, we verify the possibility of field implementation via simulation analysis using CORSIM RTE based HILS (Hardware In the Loop Simulation). The result shows that travel time of bus improves about 10 percent without increasing control delay of passenger cars by TSP. We expect the result of this research to contribute to increasing the overall transit ridership in this country.

A Study on the Change of Traffic Accidents Around the Pedestrian Priority Zone (보행자 우선도로 개선 사업으로 인한 교통사고 변화에 대한 연구)

  • JANG, Jae-Min;LEE, Young-Ihn;KIM, Sukhee;CHOI, Hoi-Kyun
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.112-128
    • /
    • 2018
  • We are implementing pedestrian priority zone policy to certain districts to reduce greenhouse gas and to develop eco-friendly city which has more focus on pedestrians' walking environment. This policy has contributed to citizens' satisfaction level with improved public transportation service as well as more spacious streets for walk. Despite highly positive influence of pedestrian priority zone policy to the walking environment, we need to anticipate the impact of this to traffic environment as it may have bad effect to the overall traffic flow around the zone where the policy is implemented. This research has analyzed the change of characteristics of traffic accidents around the eco-traffic area of Hang-Gung dong, Suwon city, to understand impact of the pedestrian priority zone policy to the traffic surroundings, with pre-post analysis methodology. As a result, number of accidents related to pedestrians showed decrease as pedestrian priority zone is designed operated with focus to pedestrians. But accidents related illegal U-turn and violation of the traffic signal showed (significant) increase as there was a restriction of turns and decrease of overall traffic speed. To prevent the accidents above, we need to notice drivers to pay special attention before the pedestrian priority zone event, and information from this research should be given to the drivers through safety signs and mobile application at the place near to the event.