• Title/Summary/Keyword: 대염수층

Search Result 24, Processing Time 0.026 seconds

Investigation on Hydraulic Properties According to Artificial Recharge and Extraction (인공 하수 주입 및 양수에 따른 대수층의 수리학적 특성 연구)

  • Kang, Jeong-Ok;Lee, So-Jung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.995-1005
    • /
    • 2005
  • The study with laboratory sandbox model has been carried out to address potential use of reclaimed water, as a countermeasure artificially recharging the coastal aquifer, to effectively prevent from seawater intrusion due to overexploitation. It also investigated plausibility for either preserving or recovering the freshwater interface facing with seawater intrusion. To do this, we assessed hydraulic properties in artificial aquifer seawater/freshwater interface) depending upon the variation of extraction, storage and injection of reclaimed water. The variation of interface between freshwater and seawater were visualized by Surfer 8(Golden Software, USA) according to given experimental conditions. The interface between seawater and freshwater has been sensitively influenced by the change of extraction rate, where seawater zone migrated much faster into freshwater zone even though extraction rate became decreased. However, decreasing recharge rate could slow down moving of saline water zone toward freshwater zone. When the recharge was solely introduced into the sand box model, saline water intrusion was retarded than those of recharge and extraction working together. And also, the level of salinity of saline water was diluted by artificial recharge. It finally revealed that the artificial recharge would hydraulically avoid seawater intrusion while the freshwater sources could be conservatively utilized.

Fresh Water Injection Test in a Fractured Bedrock Aquifer for the Mitigation of Seawater Intrusion (해수침투 저감을 위한 균열암반 대수층 내 담수주입시험)

  • Shin, Je-Hyun;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.371-379
    • /
    • 2010
  • Fresh water injection test in a fractured bedrock aquifer was applied as an efficient approach to lower saline concentrations in the saltwater-freshwater transition zone formed by seawater intrusion in a coastal area. The methodology and effectiveness of fresh water injection for hydraulically controlling seawater intrusion is overwhelmingly site dependent, and there is an urgent need to characterize the permeable fractures or unconsolidated porous formations which can allow for seawater flow and transport. Considering aquifer characteristics, injection and monitoring boreholes were optimally designed and completed to inject fresh water through sand layer and fractured bedrock, respectively. We devised and used the injection system using double packer for easy field operation and maintenance. Overall fracture distribution was systematically identified from borehole image logs, and the section of fresh water injection was decided from injection test and monitoring. With fresh water injection, the fluid electrical conductivity of the monitoring well started to be lowered by the inflow of fresh water at the specific depth. And this inflow leaded to the replacement of the fluid in the upper parts of the borehole with fresh water. Furthermore, the injection effect lasted more than several months, which means that fresh water injection may contribute to the mitigation of seawater intrusion in a coastal area.

Construct of uncontaminated underground reservoir test facility (청정지하저수지 시험시설의 구축)

  • Lee, Chang Seob;Park, Nam Sik;Jeong, Jae Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.328-328
    • /
    • 2016
  • 우리나라는 생활용수의 대부분을 지표수에 의존하고 있는 실정이다. 그러나 지표수는 가뭄과 같은 기상변화, 수질사고 등으로 물 공급의 안정성에 문제가 되기도 한다. 향후 기후변화는 가뭄의 빈도와 강도를 증대시킬 것으로 파악되므로 수질 및 수량의 문제를 더욱 악화시킬 것으로 예상된다. 이러한 문제점을 해결하기 위해 지표수를 대수층 내에 인공적으로 함양한 뒤 대수층의 자연정화 기능에 의해 여과된 양질의 청정원수를 생산하는 기술을 본 연구에서 현장에 실증 적용하는 시설을 구축하였다. 이러한 기술은 기존의 지하 대수층을 이용하는 강변여과 등이 갖는 장점을 취하고 단점을 보완하였으며 친환경적이며 지속가능한 용수공급뿐만 아니라 청정 원수 확보를 통해 정수처리비용을 절감, 장기간의 가뭄이나 지표수 수질사고 시에 비상용수 공급 등 기존 취수원들과 달리 많은 장점을 갖고 있는 대규모 청정지하저수지 시험시설이다. 청정 지하저수지 기술이 주로 적용되는 지역은 해안지역 또는 하구 델타지역을 대상으로 한다. 해안 또는 델타지역은 해수침투로 인하여 염지하수가 부존되어 있기 때문에 지하수자원 활용에 매우 제한적이다. 따라서 지표수(담수)를 전처리하여 대수층에 인공적으로 함양을 하여 염지하수 대수층 안에 담지하수(담수체)를 형성할 수 있다. 이는 염수와 담수의 밀도차에 의해 희석되지 않는 특성을 이용한 기술이다. 청정 지하저수지 시험시설은 크게 지표수 취수시설, 전처리시설, 주입정, 양수정, 운영시스템으로 나눌 수 있다. 주입정 및 양수정은 원형의 형태로 지하저수지 조성범위 중심부에 9개의 주입정과 외각에 8개의 양수정을 설치하였다. 시험시설의 운영 과정은 하천수를 취수하여 전처리시설에서 탁도를 제거한 후, 피압대수층 염지하수에 동력으로 주입을 한다. 이때 기존에 부존되어 있던 염지하수를 밀어내고 담수체 지하수 형성을 유도한다. 일정기간 주입을 통해 목표 담수체를 만들어 내면 양수정에서 담수를 취수하되, 대수층의 모래자갈층을 일정거리 이동하여 취수하는 방식이다. 즉, 하천수를 대수층에 함양하고, 일정거리를 이동하여 취수하는 ASTR 방식의 대체수자원 확보 기술이다. 시험시설은 통합운영센터를 통해 원격감시 및 각종 제어/계측을 실시하며, 모니터링된 자료는 운영시스템에서 관리한다. 본 연구시설에서는 대수층 주입, 관정폐색, 미생물/지화학 수질반응, 지하수모니터링, 지반변형 등이 주요 핵심 연구를 진행하고 있도록 시설을 구성하였다. 본 시험시설은 2015년 8월 착공하여 2016년 4월에 완공 예정이며, 2016년 3월부터 주입을 시작하여 6개월간 피압대수층에 주입을 실시하고 이후부터 주입과 양수를 병행할 계획이다.

  • PDF

Analysis of Density Current in the Tidal River (감조하천(感潮河川)의 하구(河口) 밀도류해석(密度流解析))

  • Suh, Seung Duk;Park, Sung Bae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.70-76
    • /
    • 1986
  • The purpose of this study is to offer the basic data of the tidal river development program by grasping the diffusion between the high density-sea water and the low density-fresh water in the tidal river. The tidal range of Hyungsan river which flows at Youngil bay in Pohang was selected to analysis the phenomenon of density current. The results obtained are as follows ; The tide of Youngil bay was one time a day, 0.104m in high tide difference and 0.085m in mean tidy difference. The change of sea level by tide was negligible. The volume of reserved water by sea water was $2,700,000m^3$ and available water of irrigation was $1,200,000m^3$ that salt density is below $750{\mu}{\mho}/cm$ out of total volume. Salt intrusion phenomenon by density current was a little water level change, however, it become a salt wedge type by the much salt invasion during the spring tide and it makes a well-mixed type by the retreating salt wedge during the neap tide. As long as there were some density differences between sea water and fresh water, net upstream flow was existed along the bottom of water way from the estuary to the upstream channel.

  • PDF

Minor Siliceous Microfossil Group and Fossil Cysts from the Yeonil Group (Tertiary) in the Northern Area of the Pohang Basin, Kyeongbuk Province, Korea (경북 포항분지 북부 지역의 연일층군(제3기)에서 산출되는 포낭류 화석을 비롯한 소수 규질 미화석군에 대한 연구)

  • Koh, Yeong-Koo
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.95-117
    • /
    • 2006
  • From the Tertiary Yeonil Group distributed in Songra and Cheongha areas, the northern part of the Pohang Basin, nine archaeomonad species belonging to two genera, and other three types of chryophycean cysts considered as stomatocysts, five endoskeletal dinoflagellate species belonging to three genera and eighteen ebridian species belonging to eleven genera were identified. Based on above siliceous microfossil assemblages, the Yeonil Group is corresponded to Middle Miocene age. The group is correlated with the Calvert Formation (Maryland in USA) and the Hojuji Formation (in Central Japan) by its archaeomonad cysts. And, the group is correlated with the intervals of Actiniscus elongatus to Middle Hermesinella conata zones in Southwest Pacific region and of Spongebria miocenica to Middle Hermesineila schulzii zones in $V{\o}ring$ Plateau, Norwegian Sea, based on the ebridian assemblages of the group. From the chrysophycean cyst including archaeomonad, endoskeletal dinoflagellate and ebridian assemblages in the Yeonil Group of the study area, it is inferred that cold water masses dominated during the deposition oi the group with occasional warm water. The upper part of the group might be somewhat colder than the lower one of the group in depositional condition. In addition, minute chrysopycean cysts considered as stomatocysts suggest the influence of fresh or brackish water during the deposition of the group.

High-Resolution of Paleoenvironmental Reconstruction and Sea-Level History in Delaware Bay, the East Coast of U.S.A. (미국동부 델라웨어만의 고정밀도 해수면 역사와 고환경 복원)

  • YI, HI-IL;WEHMILLER, JOHN F.
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.320-331
    • /
    • 1995
  • The closely spaced cores were analyzed to find detailed reconstruction of paleoenvironments and sealable changes along the Delaware Bay coast. Three areas, Kitts Hummock Beach mars, the St. Jones River marsh, and Bowers marsh near the St. Jones River's mouth, were chosen because these areas are compose of their own geomorphic characteristics and sea-level history. since significance of the stratigraphic correlations was to determine sedimentary fancies and paleoenvironments, multidisciplinary methods such as lithological description, grain-size analysis, organic/inorganic content, water content, mineral composition, botanical analysis, micropaleontological analysis, and /SUP 14/C datings were performed. Five major divisions of marsh environments were recognized in the stratigraphic sections: freshwater marsh, initialfreshwater marsh, slightly brackish marsh, brackish marsh, and salt marsh. Most of the lower part in the stratigraphic sections show freshwater marsh. On the top of this, either brackish marsh or tidal flat/tidal stream was recorded. The pro-Holocene sediments consist of sand, mud, and sandy mud, The pre-Holocene configuration played an important role for developing the Holocene Paleoenvironmental changes. The irregular configuration of the pre-Holocene sediments consist of sand, mud, and sandy mud. The pre-Holocene configuration played an important role for developing the Holocene Paleoenvironmental changes. The irregular configuration of the pre-Holocene surface within short distances permitted the concurrent development of variable environments such as freshwater marsh, brackish marsh or salt marsh at similar elevations. The freshwater marsh in this case was formed in the areas of isolation, so saline-water cannot encroach upon these areas. This complex development of paleoenvironments leads to a difficulty in stratigraphic correlation and interpretation of local relative sea-level changes. The deposition of subsurface sediments was affected by sediment supply, compaction, fluvial activity, biological competition, local tectonics and isostacy, climate and local relative sea-level changes. It was interpreted that the positions in the changes from freshwater environments to brackish environments or ice versa are the turning points of transgressions and regressions. Therefore, multiple transgressions and regressions were identified in the stratigraphic sections of the study area.

  • PDF

Time-lapse Geophysical Monitoring of $CO_2$ Sequestration (시간 경과에 따른 반복적 물리탐사 기법을 이용한 이산화탄소의 지중처리 모니터링)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Nam, Myung-Jin;Song, Yoon-Ho;Lee, Tae-Jong;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.280-286
    • /
    • 2005
  • Geological sequestration of carbon dioxide ($CO_2$) is one of the most effective strategies far long-term removal of greenhouse gas from atmosphere. This paper reviews three projects for the $CO_2$ sequestration in geological formation. A unique $CO_2$ injection into a marine aquifer has been successfully monitored with repeated surface seismic measurements in the North Sea Sleipner West field. The seismic images reveal the extent and internal shape of the $CO_2$ bubble. Massive miscible $CO_2$ has been injected into a complex fractured carbonate reservoir at the Weyburn oil filed. High-resolution time-lapse P-wave data were successfully obtained to map the features of $CO_2$ movements within the two thin zones of different lithology. From the time-lapse crosswell EM imaging at the Lost Hills oil field in central California, U.S.A., the replacement of brine with $CO_2$ has been confirmed through a decrease of conductivity. The conductivity image was successfully compared with induction logs observed in the two wells.

Robust 1D inversion of large towed geo-electric array datasets used for hydrogeological studies (수리지질학 연구에 이용되는 대규모 끄는 방식 전기비저항 배열 자료의 1 차원 강력한 역산)

  • Allen, David;Merrick, Noel
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.50-59
    • /
    • 2007
  • The advent of towed geo-electrical array surveying on water and land has resulted in datasets of magnitude approaching that of airborne electromagnetic surveying and most suited to 1D inversion. Robustness and complete automation is essential if processing and reliable interpretation of such data is to be viable. Sharp boundaries such as river beds and the top of saline aquifers must be resolved so use of smoothness constraints must be minimised. Suitable inversion algorithms must intelligently handle low signal-to-noise ratio data if conductive basement, that attenuates signal, is not to be misrepresented. A noise-level aware inversion algorithm that operates with one elastic thickness layer per electrode configuration has been coded. The noise-level aware inversion identifies if conductive basement has attenuated signal levels so that they are below noise level, and models conductive basement where appropriate. Layers in the initial models are distributed to span the effective depths of each of the geo-electric array quadrupoles. The algorithm works optimally on data collected using geo-electric arrays with an approximately exponential distribution of quadrupole effective depths. Inversion of data from arrays with linear electrodes, used to reduce contact resistance, and capacitive-line antennae is plausible. This paper demonstrates the effectiveness of the algorithm using theoretical examples and an example from a salt interception scheme on the Murray River, Australia.

Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin (포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가)

  • Kwon, Yi Kyun;Chang, Chandong;Shinn, Youngjae
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.217-246
    • /
    • 2018
  • During the selection and characterization of target formations in the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin, we have carefully investigated the possibility of induced earthquakes and leakage of $CO_2$ during the injection, and have designed the storage processes to minimize these effects. However, people in Pohang city have a great concern on $CO_2$-injection-intrigued seismicity, since they have greatly suffered from the 5.4 magnitude earthquake on Nov. 15, 2017. The research team of the project performed an extensive self-investigation on the safety issues, especially on the possible $CO_2$ leakage from the target formation and induced earthquakes. The target formation is 10 km apart from the epicenter of the Pohang earthquake and the depth is also quite shallow, only 750 to 800 m from the sea bottom. The project performed a pilot injection in the target formation from Jan. 12 to Mar. 12, 2017, which implies that there are no direct correlation of the Pohang earthquake on Nov. 15, 2017. In addition, the $CO_2$ injection of the storage project does not fracture rock formations, instead, the supercritical $CO_2$ fluid replaces formation water in the pore space gradually. The self-investigation results show that there is almost no chance for the injection to induce significant earthquakes unless injection lasts for a very long time to build a very high pore pressure, which can be easily monitored. The amount of injected $CO_2$ in the project was around 100 metric-tonne that is irrelevant to the Pohang earthquake. The investigation result on long-term safety also shows that the induced earthquakes or the reactivation of existing faults can be prevented successfully when the injection pressure is controlled not to demage cap-rock formation nor exceed Coulomb stresses of existing faults. The project has been performing extensive studies on critical stress for fracturing neighboring formations, reactivation stress of existing faults, well-completion processes to minimize possible leakage, transport/leakage monitoring of injected $CO_2$, and operation procedures for ensuring the storage safety. These extensive studies showed that there will be little chance in $CO_2$ leakage that affects human life. In conclusion, the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin would not cause any induced earthquakes nor signifiant $CO_2$ leakage that people can sense. The research team will give every effort to secure the safety of the storage site.

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.