Time-lapse Geophysical Monitoring of $CO_2$ Sequestration

시간 경과에 따른 반복적 물리탐사 기법을 이용한 이산화탄소의 지중처리 모니터링

  • Kim, Hee-Joon (Department of Environmental Exploration Engineering, Pukyong National University) ;
  • Choi, Ji-Hyang (Department of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Han, Nu-Ree (Department of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Nam, Myung-Jin (Department of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Song, Yoon-Ho (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Tae-Jong (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Suh, Jung-Hee (Department of Civil, Urban and Geosystem Engineering, Seoul National University)
  • 김희준 (부경대학교 환경탐사공학과) ;
  • 최지향 (서울대학교 지구환경시스템공학부) ;
  • 한누리 (서울대학교 지구환경시스템공학부) ;
  • 남명진 (서울대학교 지구환경시스템공학부) ;
  • 송윤호 (한국지질자원연구원 지하수지열연구부) ;
  • 이태종 (한국지질자원연구원 지하수지열연구부) ;
  • 서정희 (서울대학교 지구환경시스템공학부)
  • Published : 2005.11.30

Abstract

Geological sequestration of carbon dioxide ($CO_2$) is one of the most effective strategies far long-term removal of greenhouse gas from atmosphere. This paper reviews three projects for the $CO_2$ sequestration in geological formation. A unique $CO_2$ injection into a marine aquifer has been successfully monitored with repeated surface seismic measurements in the North Sea Sleipner West field. The seismic images reveal the extent and internal shape of the $CO_2$ bubble. Massive miscible $CO_2$ has been injected into a complex fractured carbonate reservoir at the Weyburn oil filed. High-resolution time-lapse P-wave data were successfully obtained to map the features of $CO_2$ movements within the two thin zones of different lithology. From the time-lapse crosswell EM imaging at the Lost Hills oil field in central California, U.S.A., the replacement of brine with $CO_2$ has been confirmed through a decrease of conductivity. The conductivity image was successfully compared with induction logs observed in the two wells.

장기적인 관점에서 띠 산화탄소 지중처리는 대기 중의 온실 가스를 제거하는 가장 효과적인 방법 중 하나이다. 본 해설에서는, 이산화탄소 지존처리를 위한 세 가지 모니터링 프로젝트에 대해 살펴보고자 한다. 먼저 북해 Sleipner West 필드의 경우로, 여기에서는 염류대수층에 이산화탄소를 주입하고, 해수면에서 반복적으로 탄성파탐사를 실시하였다. 이를 통해, 대수층 내에서 이산화탄소 기포가 확산된 범위와 형태를 파악하였다. 다음은 Weyburn 유전의 경우로, 복잡한 파쇄 구조로 된 탄산염 저류층에 대규모의 이산화탄소를 주입하고 있던 이 유전에서 시간 경과에 따른 고해상도 P파 탐사를 실시하여 각기 다른 암석으로 이루어진 두 지층 사이의 이산화탄소 거동특성을 파악하였다. 마지막으로, 미국 캘리포니아 중부에 위치한 Lost Hills 유전의 경우는 시간 경과에 따라 시추공간 전자탐사 영상화 기법을 적용하여 동일한 시추공에서 얻은 유도 검층 자료와 잘 일치하는 전기전도도 영상을 얻고, 전기전도도가 시간 경과에 따라 감소하는 것으로부터 이산화탄소가 염수를 대체했다는 사실을 확인하였다.

Keywords

References

  1. 채기탁, 윤성택, 최병영, 김강주, Shevalier, M., 2005, 이산화탄소 저감을 위한 지중처분기술의 지구화학적 개념과 연구개발, 자원환경지질, 38, 1-22
  2. Alumbaugh, D. L., and Morrison, H. F., 1995, Theoretical and practical considerations for crosswell electromagnetic tomography assuming a cylindrical geometry, Geophysics, 60, 846-870
  3. Alumbaugh, D. L., and Newman, G A., 1997, Three-dimensional massively parallel electromagnetic inversion-II. Analysis of crosswell electromagnetic experiment, Geophys. J. Int., 128, 355-363
  4. Benson, R., and Davis, T., 2005, $CO_2$ sequestration in a depleted oil reservoir - west Pearl Queen field, 67th EAGE Conference & Exhibition, Extended Abstracts, 137 p
  5. Eiken, O., Brevik, I., Arts, R., Lindeberg, E., and Fagervik, K., 2000, Seismic monitoring of $CO_2$ injected into a marine aquifer, 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1623-1626
  6. Habashy, T. M., Groom, R. M., and Spies, B. R., 1993, Beyond the Bom and Rytov approximations: a nonlinear approach to electromagnetic scattering, J. Geophys. Res., 98, 1795-1775
  7. Johnson, J. W., Nitao, J. J., Steefel, C. I., and Knauss, K. G, 2001, Reactive transport modeling of geologic $CO_2$ sequestration in saline aquifers: the influence of infra-aquifer shales and the relative effectiveness of structural, solubility and mineral trapping during prograde and retrograde sequestration, Proc. 1st Nat. Conf. on Carbon Sequestration, Washington, D.C
  8. Kim, H. J., Lee, K. H., and Wilt, M., 2003, A fast inversion method for interpreting borehole electromagnetic data, Earth Ptanets Space, 55, 249-254
  9. Kim, H. J., and Song, 2003, Efficient crosswell EM tomography for monitoring geological sequestration of $CO_2$, Geosystem Eng., 6, 13-18
  10. Kim, H. J., Song, Y., Lee, K. H., and Wilt, M., 2004, Efficient crosswell EM tomography using localized nonlinear approximation, Expl. Geophys./Butsuri-Tansa/Mulli-tamsa, 35/57/7, 51-55
  11. Li, G, 2003, 4D seismic monitoring of $CO_2$ flood in a thin fractured carbonate reservoir, Leadine Edge, 22, 690-695
  12. McKenna, J., Gurevich, B., Urosevic, M., and Evans, B., 2003, Estimating bulk and shear moduli for shallow saline aquifers undergoing $CO_2$ injection, Proc. 6th SEGJ Int. Symp., 490-497
  13. Newman, G. A., 1995, Crosswell electromagnetic inversion using integral and differential equations, Geophysics, 60, 899-911
  14. Patzek, T., Wilt, M., and Hoverstem, G. M., 2000, Using crosshole electromagnetics (EM) for reservoir characterization and waterflood monitoring, 2000 SPE Permian Basin Oil and Gas Recovery Conference, Texas, SPE 59529
  15. Raef, A. B., Miller, R. D., Franseen, E. K., Bymes, A. P., Watnet, W. L., and Harrison, W. E., 2005, 4D seismic to image a thin carbonate reservoir during a miscible $CO_2$ flood: Hall-Gumey Field, Kansas, USA, Leading Edge, 24, 521-526
  16. Song, Y, Kim, J.-H., and Chung, S.-H., 2001, An effcient 2.5-D inversion of loop-loop EM data, Proc. 5th SEGJ Int. Symp., 153-160
  17. Terrell, M., Galikeev, T., Yamamoto, H., Davis, T., and Benson, R., 2004, Weyburn Field: from integrated 4D 9C seismic analysis to flow simulation, 66th EAGE Conference & Exhibition, Extended Abstracts, A003
  18. Torraca, L. C., 2005, Carbon dioxide final disposal from plants of amines treatment and gas fields, 67th EAGE Conference & Exhibition, Extended Abstracts, 138 p
  19. Van Bergen, F., Winthaegen, P., Pagnier, H., Jura, B., K-obiela, Z., and Skiba, J., 2005, Monitoring techniques applied for $CO_2$ injection in coal, 67th EAGE Conference & Exhibition, Extended Abstracts, A018
  20. Wang, Z., Cates, M. E., and Langan, R. T., 1999, Seismic monitoring of a $CO_2$ flood in a carbonate reservoir: A rock physics study, Geophysics, 63, 1604-1617
  21. Wilt, M. J., Alumbaugh, D. L., Morrison, H. F., Becker, A., Lee, K. H., and Deszcz-Pan, M., 1995, Crosshole electromagnetic tomography: System design considerations and field results, Geophysics, 60, 871-885
  22. Xue, Z., and Ohsumi, T., 2004, Seismic wave monitoring of $CO_2$ migration in water-saturated porous sandstone, Expl. Geophys. /Butsuri-Tansa/Mulli-Tamsa, 35/57/7, 25-32
  23. Zhou, Q., Becker, A., and Morrison, H. F., 1993, Audio-frequency electromagnetic tomography in 2-D, Geophysics, 58, 482-495