• Title/Summary/Keyword: 대역 필터

Search Result 1,239, Processing Time 0.023 seconds

Design of a Narrow Band Pass Filter with Crystal Oscillator for NAVTEX Receivers (수정발진자를 이용한 NAVTEX 수신기용 협대역 여파기 설계)

  • Jang, Moon-Kee;Ahn, Jung-Soo;Park, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.857-862
    • /
    • 2008
  • This paper evaluate the performance using a simulated 490KHz narrow band filter based on characteristic parameters appropriately extracted from 490KHz band-pass filter after considering each characteristic, which is modeled on equivalent circuit and applied to NAVTEX receiver using crystal oscillator. The evaluation results show that the value of a series capacitor of crystal oscillator has only little capacity by Cs=21.094fF and the bandwidth characteristics of filter go worse as the capacity value of crystal oscillator grow increase. Moreover, the series inductance value of crystal oscillator has a relatively big value by L=5H, therefore the bandwidth characteristic according as inductance's capacity shows more little effect than the capacity.

An Advanced Dead-Time Compensation Method for Dual Inverter with a Floating Capacitor (플로팅 커패시터를 갖는 이중 인버터를 위한 향상된 데드 타임 보상 기법)

  • Kang, Ho Hyun;Jang, Sung-Jin;Lee, Hyung-Woo;Hwang, Jun-Ho;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.271-279
    • /
    • 2022
  • This paper proposes an advanced dead-time compensation method for dual inverter with a floating capacitor. The dual inverter with floating capacitor is composed of double two-level inverters and a bulk electrolytic capacitor. The output voltage of the dual inverter is dropped by the conduction voltage of the power semiconductors. The voltage drop and dead-time cause the fundamental and harmonic distortions of output currents. When supplied power for OEW-load is low, the dual inverter operates as single inverter for effective operation. The dead-time compensation method for the dual inverter operated as single inverter is needed for reliability. The proposed method using band pass filter in this paper compensates dead-time, dead-time error and changed voltage drop error of power semiconductors for the dual inverter and dual inverter operated as single inverter. The effectiveness of the proposed method is verified by simulation results.

Spectral Modeling of Haegeum Using Cepstral Analysis (캡스트럼 분석을 이용한 해금의 스펙트럼 모델링)

  • Hong, Yeon-Woo;Kang, Myeong-Su;Cho, Sang-Jin;Kim, Jong-Myon;Lee, Jung-Chul;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.243-250
    • /
    • 2010
  • This paper proposes a spectral modeling of Korean traditional instrument, Haegeum, using cepstral analysis to naturally describe Haegeum sounds varying with time. To get a precise result of cepstral analysis, we set the frame size to 3 periods of input signal and more cepstral coefficients are used to extract formants. The performance is enhanced by flexibly controlling the cutoff frequency of bandpass filter depending on the resonances in the synthesis process of sinusoidal components and the deleting peaks remained in the residual signal. To detect the change of pitch, we divide the input frames into silence, attack, and sustain region and determine which region the current frame is involved in. Then, the proposed method readjusts the frame size according to the fundamental frequency in the case of the current frame is in attack region and corrects the extraction errors of the fundamental frequency for the frames in sustain region. With these processes, the synthesized sounds are much more similar to the originals. The evaluation result through the listening test by a Haegeum player says that the synthesized sounds are almost similar to originals (96~100 % similar to the original sounds).

Formant Synthesis of Haegeum Sounds Using Cepstral Envelope (캡스트럼 포락선을 이용한 해금 소리의 포만트 합성)

  • Hong, Yeon-Woo;Cho, Sang-Jin;Kim, Jong-Myon;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • This paper proposes a formant synthesis method of Haegeum sounds using cepstral envelope for spectral modeling. Spectral modeling synthesis (SMS) is a technique that models time-varying spectra as a combination of sinusoids (the "deterministic" part), and a time-varying filtered noise component (the "stochastic" part). SMS is appropriate for synthesizing sounds of string and wind instruments whose harmonics are evenly distributed over whole frequency band. Formants extracted from cepstral envelope are parameterized for synthesis of sinusoids. A resonator by Impulse Invariant Transform (IIT) is applied to synthesize sinusoids and the results are bandpass filtered to adjust magnitude. The noise is calculated by first generating the sinusoids with formant synthesis, subtracting them from the original sound, and then removing some harmonics remained. Linear interpolation is used to model noise. The synthesized sounds are made by summing sinusoids, which are shown to be similar to the original Haegeum sounds.

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

Oil Fluorescence Spectrum Analysis for the Design of Fluorimeter (형광 광도계 설계인자 도출을 위한 기름의 형광 스펙트럼 분석)

  • Oh, Sangwoo;Seo, Dongmin;Ann, Kiyoung;Kim, Jaewoo;Lee, Moonjin;Chun, Taebyung;Seo, Sungkyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.304-309
    • /
    • 2015
  • To evaluate the degree of contamination caused by oil spill accident in the sea, the in-situ sensors which are based on the scientific method are needed in the real site. The sensors which are based on the fluorescence detection theory can provide the useful data, such as the concentration of oil. However these kinds of sensors commonly are composed of the ultraviolet (UV) light source such as UV mercury lamp, the multiple excitation/emission filters and the optical sensor which is mainly photomultiplier tube (PMT) type. Therefore, the size of the total sensing platform is large not suitable to be handled in the oil spill field and also the total price of it is extremely expensive. To overcome these drawbacks, we designed the fluorimeter for the oil spill detection which has compact size and cost effectiveness. Before the detail design process, we conducted the experiments to measure the excitation and emission spectrum of oils using five different kinds of crude oils and three different kinds of processed oils. And the fluorescence spectrometer were used to analyze the excitation and emission spectrum of oil samples. We have compared the spectrum results and drawn the each common spectrum regions of excitation and emission. In the experiments, we can see that the average gap between maximum excitation and emission peak wavelengths is near 50 nm for the every case. In the experiment which were fixed by the excitation wavelength of 365 nm and 405 nm, we can find out that the intensity of emission was weaker than that of 280 nm and 325 nm. So, if the light sources having the wavelength of 365 nm or 405 nm are used in the design process of fluorimeter, the optical sensor needs to have the sensitivity which can cover the weak light intensity. Through the results which were derived by the experiment, we can define the important factors which can be useful to select the effective wavelengths of light source, photo detector and filters.

Color-Texture Image Watermarking Algorithm Based on Texture Analysis (텍스처 분석 기반 칼라 텍스처 이미지 워터마킹 알고리즘)

  • Kang, Myeongsu;Nguyen, Truc Kim Thi;Nguyen, Dinh Van;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • As texture images have become prevalent throughout a variety of industrial applications, copyright protection of these images has become important issues. For this reason, this paper proposes a color-texture image watermarking algorithm utilizing texture properties inherent in the image. The proposed algorithm selects suitable blocks to embed a watermark using the energy and homogeneity properties of the grey level co-occurrence matrices as inputs for the fuzzy c-means clustering algorithm. To embed the watermark, we first perform a discrete wavelet transform (DWT) on the selected blocks and choose one of DWT subbands. Then, we embed the watermark into discrete cosine transformed blocks with a gain factor. In this study, we also explore the effects of the DWT subbands and gain factors with respect to the imperceptibility and robustness against various watermarking attacks. Experimental results show that the proposed algorithm achieves higher peak signal-to-noise ratio values (47.66 dB to 48.04 dB) and lower M-SVD values (8.84 to 15.6) when we embedded a watermark into the HH band with a gain factor of 42, which means the proposed algorithm is good enough in terms of imperceptibility. In addition, the proposed algorithm guarantees robustness against various image processing attacks, such as noise addition, filtering, cropping, and JPEG compression yielding higher normalized correlation values (0.7193 to 1).

Electromagnetic Modeling of High Altitude Electromagnetic Pulse Coupling into Large-Scale Underground Multilayer Structures (다층 지하 구조물로의 고고도 전자기파(HEMP) 커플링 현상에 대한 전자기적 모델링)

  • Kang, Hee-Do;Oh, Il-Young;Kim, Jung-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.392-401
    • /
    • 2012
  • This paper gives a electromagnetic coupling mechanism of the high altitude electromagnetic pulse (HEMP) into large- scale underground multilayer structures using analytic and numerical methods. The modeling methods are firstly addressed to the HEMP source which can be generated by intentional nuclear explosion. The instantaneous and intense electromagnetic pulse of the HEMP source is concerned from DC to 100 MHz band, because the power spectrum of the HEMP is rapidly decreased under -30 dB over the 100 MHz band. Through this range, a penetrated electric field distribution is computed within the large-scale underground multilayer structures. As a result, the penetrated electric field intensities at 0.1 and 1 MHz are about 10 and 5 kV/m, respectively. Therefore, additional shielding techniques are introduced to protect buried structures within the large-scale underground structures such as high-lossy material and filtering structures (wire screen).

An 8b 240 MS/s 1.36 ㎟ 104 mW 0.18 um CMOS ADC for High-Performance Display Applications (고성능 디스플레이 응용을 위한 8b 240 MS/s 1.36 ㎟ 104 mW 0.18 um CMOS ADC)

  • In Kyung-Hoon;Kim Se-Won;Cho Young-Jae;Moon Kyoung-Jun;Jee Yong;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • This work describes an 8b 240 MS/s CMOS ADC as one of embedded core cells for high-performance displays requiring low power and small size at high speed. The proposed ADC uses externally connected pins only for analog inputs, digital outputs, and supplies. The ADC employs (1) a two-step pipelined architecture to optimize power and chip size at the target sampling frequency of 240 MHz, (2) advanced bootstrapping techniques to achieve high signal bandwidth in the input SHA, and (3) RC filter-based on-chip I/V references to improve noise performance with a power-off function added for portable applications. The prototype ADC is implemented in a 0.18 um CMOS and simultaneously integrated in a DVD system with dual-mode inputs. The measured DNL and INL are within 0.49 LSB and 0.69 LSB, respectively. The prototype ADC shows the SFDR of 53 dB for a 10 MHz input sinewave at 240 MS/s while maintaining the SNDR exceeding 38 dB and the SFDR exceeding 50 dB for input frequencies up to the Nyquist frequency at 240 MS/s. The ADC consumes, 104 mW at 240 MS/s and the active die area is 1.36 ㎟.

Postprocessing of Inter-Frame Coded Images Based on Convex Projection and Regularization (POCS와 정규화를 기반으로한 프레임간 압출 영사의 후처리)

  • Kim, Seong-Jin;Jeong, Si-Chang;Hwang, In-Gyeong;Baek, Jun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.58-65
    • /
    • 2002
  • In order to reduce blocking artifacts in inter-frame coded images, we propose a new image restoration algorithm, which directly processes differential images before reconstruction. We note that blocking artifact in inter-frame coded images is caused by both 8$\times$8 DCT and 16$\times$16 macroblock based motion compensation, while that of intra-coded images is caused by 8$\times$8 DCT only. According to the observation, we Propose a new degradation model for differential images and the corresponding restoration algorithm that utilizes additional constraints and convex sets for discontinuity inside blocks. The proposed restoration algorithm is a modified version of standard regularization that incorporate!; spatially adaptive lowpass filtering with consideration of edge directions by utilizing a part of DCT coefficients. Most of video coding standard adopt a hybrid structure of block-based motion compensation and block discrete cosine transform (BDCT). By this reason, blocking artifacts are occurred on both block boundary and block interior For more complete removal of both kinds of blocking artifacts, the restored differential image must satisfy two constraints, such as, directional discontinuities on block boundary and block interior Those constraints have been used for defining convex sets for restoring differential images.