• Title/Summary/Keyword: 대역통과 여파기

Search Result 244, Processing Time 0.025 seconds

RF 가변 대역 통과 여파기 설계

  • 황희용;김병욱;윤상원
    • Information and Communications Magazine
    • /
    • v.19 no.11
    • /
    • pp.109-122
    • /
    • 2002
  • 최근 Software Defined Radio(혹은 Software Radio) 관련 연구가 국내외에서 활발해지면서 RF부품 및 시스템에 적용하기 위한 연구가 새로운 주제로 부각되고 있다. 본 고에서는 이러한 추세에 맞추어 RF 대역에서 부품 및 시스템의 연구 내용 검토하며, 가장 문제가 된다고 판단되는 대역통과여파기의 설계를 중심으로 논의하고자 한다.

Design of Triangular-Patch Type Low Pass Filter (삼각패치형 저역 통과 여파기의 구현)

  • Oh, Song-Yi;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.355-360
    • /
    • 2012
  • In this paper, an stepped-impedance low pass filter(SI-LPF) of triangular-patch type is proposed. A SI-LPF designed according to the standard SI-LPF design procedure is folded as a right angled triangle. The figure of merits of this structure are the adjustabilities of the cut off frequency, the stopband and the attenuation pole frequency of the proposed LPF by varying the resultant slots after folding the SI-LPF compactly for miniaturization. The size of the fabricated LPF is $13.75mm{\times}6.875mm$, which is 24.4 % reduced one compared to that of the conventional SI-LPF. The measured results of the LPF show return loss of less than -10 dB at passband, insertion loss of less than -10 dB at stopband and wide stopband from 3.5 GHz to 10 GHz (about $3f_c$).

Design of a Dual Band-pass Filter Using Fork-type Open Stubs and SIR Structure (포크 형태의 개방형 스터브 및 SIR 구조를 이용한 이중대역 대역통과 여파기의 설계)

  • Tae-Hyeon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.252-264
    • /
    • 2023
  • This paper proposes a design of a dual-band band-pass filter that integrates a λg/2 open SIR structure, a transmission line, and a fork-type structure with symmetric and asymmetric open stubs. To obtain the dual-band effect, the proposed filter uses the SIR structure and adjusts the impedance ratio of the SIR structure. Therefore, the position of the harmonics of the filter is shifted through the adjustment of the impedance ratio, and this can obtain a double-band effect. In order to obtain the dual-band characteristics, the dual-band effect is obtained by inserting a open stub between the SIR structures with the SIR structure divided in half. In addition, the second frequency response is obtained by adjusting the length of the open symmetrical stub in the fork-shaped structure. The asymmetrical open stub in the fork form achieves optimum bandwidth by adjusting the length. Therefore, the first center frequency of the proposed band-pass filter is 5.896 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.13 dB and 33.6 dB. The second center frequency is 5.906 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.15 dB and 19.8 dB. The reason is that when the impedance ratio (Δ) is higher than 1, the position of the harmonic is shifted to a lower frequency band. However, if the impedance ratio (Δ) is lowered by one step, the position of harmonics will move to a higher frequency band. The function of the filter designed using these characteristics can be obtained from the measurement result. The proposed band-pass filter has no coupling loss and no via energy concentration loss because there is no coupling structure of input/output and no via hole. Therefore, system integration is possible due to its excellent performance, and it is expected that dedicated short-range communication (DSRC) system applications used in traffic communication systems will be possible.

The Study of Microwave Band-Stop Filters with Narrow Stop-Band (마이크로파 광대역저지여파기에 로파기에 대한 연구)

  • Gang, Hyeong-Mok;Park, Han-Gyu;Jin, Cheol-Jae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 1970
  • The band-stop filters which resonate at intervals of one-quarters, and three-quarters guide-wave length are designed and its frequency characteristics are measured. 2K25 klystrons (at 8000MC) were used as microwaves source. This bandstop filters were designed from low pass prototype and the Impedance of Impedance of these filters was made to be equal to one of the low pass prototype. It is demonstrated that the filters considered here, have narrow stop bandwidths and sharp characteristics in the stop band.

  • PDF

Design of a 5.8 GHz Broad Band-Pass Filter with Second of Harmonics Suppression Using the Open Stubs (2차 고조파가 억제된 5.8 GHz 광대역 개방형 스터브 대역 통과 여파기 설계)

  • Choi, Young-Gu;Kim, Bok-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1107-1116
    • /
    • 2007
  • In this paper, a broadband open stubs band pass filters which can suppress the second harmonics using Z-transform technique, is designed, fabricated and characterized. The proposed broadband filters integrate the band stop filter with the FSCS structure and ${\lambda}_g/4$ open stub in order to suppress the second harmonics. Due to insertion of BSF at input and output terminal, the size of the filter was increased in the conventional filter, however, in the proposed structure, the position of inverter that connects the stubs can be integrated between those stubs, thereby decreasing the size. So, it can be fabricated in the size of $18.7{\times}16.9mm^2$ which is smaller size than conventional one. The measured results of the proposed filters have center frequency of a 5.8 GHz with bandwidth of 95 %, insertion loss of 0.6 dB, return loss of 14 dB. The simulation results are consistent with measurement results. The filter is designed far X-band satellite communication and ITS applications.

Design of Multi-Layer Dual-Band Bandpass Filter Using Aperture-Coupling (개구 결합을 이용한 적층형 이중 대역 대역 통과 여파기 설계)

  • Shin, Bong-Geol;Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2012
  • In this paper, a multi-layer dual-band bandpass filter using aperture-coupling is proposed. Two coupling paths are formed with the two apertures which exist between two dual-mode resonators. The coupling coefficients can be adjusted without changing the shape of resonators. The bandwidth of the second passband can be adjusted without affecting the bandwidth of the first passband using the size of an aperture between stubs of the dual-mode resonator. The aperture coupling mechanism is theoretically analysed. The dual-mode bandpass filter for the 2.4 GHz WLAN, 3.5 GHz WiMax was designed and fabricated. The fabricated filter shows centered 2.45 GHz and 3.5 GHz with 9 % and 8 % of the bandwidth.