• Title/Summary/Keyword: 대수식의 지도

Search Result 90, Processing Time 0.022 seconds

Analysis of the Algebraic Thinking Factors and Search for the Direction of Its Learning and Teaching (대수의 사고 요소 분석 및 학습-지도 방안의 탐색)

  • Woo, Jeong-Ho;Kim, Sung-Joon
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.4
    • /
    • pp.453-475
    • /
    • 2007
  • School algebra starts with introducing algebraic expressions which have been one of the cognitive obstacles to the students in the transfer from arithmetic to algebra. In the recent studies on the teaching school algebra, algebraic thinking is getting much more attention together with algebraic expressions. In this paper, we examined the processes of the transfer from arithmetic to algebra and ways for teaching early algebra through algebraic thinking factors. Issues about algebraic thinking have continued since 1980's. But the theoretic foundations for algebraic thinking have not been founded in the previous studies. In this paper, we analyzed the algebraic thinking in school algebra from historico-genetic, epistemological, and symbolic-linguistic points of view, and identified algebraic thinking factors, i.e. the principle of permanence of formal laws, the concept of variable, quantitative reasoning, algebraic interpretation - constructing algebraic expressions, trans formational reasoning - changing algebraic expressions, operational senses - operating algebraic expressions, substitution, etc. We also identified these algebraic thinking factors through analyzing mathematics textbooks of elementary and middle school, and showed the middle school students' low achievement relating to these factors through the algebraic thinking ability test. Based upon these analyses, we argued that the readiness for algebra learning should be made through the processes including algebraic thinking factors in the elementary school and that the transfer from arithmetic to algebra should be accomplished naturally through the pre-algebra course. And we searched for alternative ways to improve algebra curriculums, emphasizing algebraic thinking factors. In summary, we identified the problems of school algebra relating to the transfer from arithmetic to algebra with the problem of teaching algebraic thinking and analyzed the algebraic thinking factors of school algebra, and searched for alternative ways for improving the transfer from arithmetic to algebra and the teaching of early algebra.

  • PDF

Mathematics teachers' Key Developmental Understandings for teaching equation writing (수학교사의 대수식 쓰기 지도를 위한 발달에 핵심적인 이해)

  • Choi, Yunhyeong;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.60 no.3
    • /
    • pp.297-319
    • /
    • 2021
  • The present study explored a relationship between mathematical understandings of teachers and ways in which their knowledge transferred in designing lessons for hypothetical students from Gess-Newsome (1999)'s transformative perspective of pedagogical content knowledge. To this end, we conducted clinical interviews with four secondary mathematics teachers of their solving and teaching of equation writing. After analyzing the teacher participants' attention to Key Developmental Understandings (Simon, 2007) in solving equation writing, we sought to understand the relationship between their mathematical knowledge of the problems and mathematical knowledge in teaching the problems to hypothetical students. Two of the four teachers who attended the key developmental understandings solved the problems more successfully than those who did not. The other two teachers had trouble representing and explaining the problems, which involved reasoning with improper fractions or reciprocal relationships between quantities. The key developmental understandings of all four teachers were reflected in their pedagogical actions for teaching the equation writing problems. The findings contribute to teacher education by providing empirical data on the relationship between teachers' mathematical knowledge and their knowledge for teaching particular mathematics.

A Review of Teaching the Concept of the Matrix in relation to Historico-Genetic Principle (역사발생적 관점에서 본 행렬 지도의 재음미)

  • Cho, Seong-Min
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.1
    • /
    • pp.99-114
    • /
    • 2009
  • Although they are interested in Linear Algebra not only in science and engineering but also in humanities and sociology recently, a study of teaching linear algebra is not relatively abundant because linear algebra was taken as basic course in colleges just for 20-30 years. However, after establishing The Linear Algebra Curriculum Study Group in January, 1990, a variety of attempts to improve teaching linear algebra have been emerging. This article looks into series of studies related with teaching matrix. For this the method for teaching the concepts of matrix in relation to historico-genetic principle looking through the process of the conceptual development of matrix-determinants, matrix-systems of linear equations and linear transformation.

  • PDF

Algebraic Reasoning Abilities of Elementary School Students and Early Algebra Instruction(1) (초등학생의 대수 추론 능력과 조기 대수(Early Algebra) 지도(1))

  • Lee, Hwa Young;Chang, Kyung Yoon
    • School Mathematics
    • /
    • v.14 no.4
    • /
    • pp.445-468
    • /
    • 2012
  • This study is tried in order to link informal arithmetic reasoning to formal algebraic reasoning. In this study, we investigated elementary school student's non-formal algebraic reasoning used in algebraic problem solving. The result of we investigated algebraic reasoning of 839 students from grade 1 to 6 in two schools, Korea, we could recognize that they used various arithmetic reasoning and pre-formal algebraic reasoning which is the other than that is proposed in the text book in word problem solving related to the linear systems of equation. Reasoning strategies were diverse depending on structure of meaning and operational of problems. And we analyzed the cause of failure of reasoning in algebraic problem solving. Especially, 'quantitative reasoning', 'proportional reasoning' are turned into 'non-formal method of substitution' and 'non-formal method of addition and subtraction'. We discussed possibilities that we are able to connect these pre-formal algebraic reasoning to formal algebraic reasoning.

  • PDF

A Translation of an Object Calculus into an Object Algebra (객체 해석을 객체 대수로의 변환)

  • Lee, Hong-Ro;Kwak, Hoon-Sung;Ryu, Keun-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.672-682
    • /
    • 1996
  • In this paper, we propose an algorithm to transform an object calculus into an object algebra. The algorithm translates the calculus expression into an equivalent algebra expression, and it maps the object algebra expression to an object algebra operator graph. This translation algorithm not only generates an efficient access plan of queries, but also proves the equivalent expressiveness of queries.

  • PDF

An analysis of algebraic thinking of fourth-grade elementary school students (초등학교 4학년 학생들의 대수적 사고 분석)

  • Choi, Ji-Young;Pang, Jeong-Suk
    • Communications of Mathematical Education
    • /
    • v.22 no.2
    • /
    • pp.137-164
    • /
    • 2008
  • Given the importance of early experience in algebraic thinking, we designed six consecutive lessons in which $4^{th}$ graders were encouraged to recognize patterns in the process of finding the relationships between two quantities and to represent a given problem with various mathematical models. The results showed that students were able to recognize patterns through concrete activities with manipulative materials and employ various mathematical models to represent a given problem situation. While students were able to represent a problem situation with algebraic expressions, they had difficulties in using the equal sign and letters for the unknown value while they attempted to generalize a pattern. This paper concludes with some implications on how to connect algebraic thinking with students' arithmetic or informal thinking in a meaningful way, and how to approach algebra at the elementary school level.

  • PDF

Analysis on the Principles for Teaching Algebra Revealed in Clairaut's (Clairaut의 <대수학 원론>에 나타난 대수 지도 원리에 대한 분석)

  • Chang, Hye-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.253-270
    • /
    • 2007
  • by A.C. Clairaut was written based on the historico-genetic principle such as his . In this paper, by analyzing his we can induce six principles that Clairaut adopted to teach algebra: necessity and curiosity as a motive of studying algebra, harmony of discovery and proof, complementarity of generalization and specialization, connection of knowledge to be learned with already known facts, semantic approaches to procedural knowledge of mathematics, reversible approach. These can be considered as strategies for teaching algebra accorded with beginner's mind. Some of them correspond with characteristics of , but the others are unique in the domain of algebra. And by comparing Clairaut's approaches with school algebra, we discuss about some mathematical subjects: setting equations in relation to problem situations, operations and signs of letters, rule of signs in multiplication, solving quadratic equations, and general relationship between roots and coefficients of equations.

  • PDF

An Analysis of Algebraic Thinking by Third Graders (초등학교 3학년 학생들의 대수적 사고에 대한 실태 분석)

  • Pang, JeongSuk;Choi, InYoung
    • Education of Primary School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.223-247
    • /
    • 2016
  • Given the importance of developing algebraic thinking from early grades, this study investigated an overall performance and main characteristics of algebraic thinking from a total of 197 third grade students. The national elementary mathematics curriculum in Korea does not emphasize directly essential elements of algebraic thinking but indicates indirectly some of them. This study compared our students' performance related to algebraic thinking with results of Blanton et al. (2015) which reported considerable progress of algebraic thinking by emphasizing it through a regular curriculum. The results of this study showed that Korean students solved many items correctly as compatible to Blanton et al. (2015). However, our students tended to use 'computational' strategies rather than 'structural' ones in the process of solving items related to equation. When it comes to making algebraic expressions, they tended to assign a particular value to the unknown quantity followed by the equal sign. This paper is expected to explore the algebraic thinking by elementary school students and to provide implications of how to promote students' algebraic thinking.

Research Trends and Approaches to Early Algebra (조기 대수(Early Algebra)의 연구 동향과 접근에 관한 고찰)

  • Lee, Hwa-Young;Chang, Kyong-Yun
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.3
    • /
    • pp.275-292
    • /
    • 2010
  • In this study, we discussed the way to teach algebra earlier through investigating to research trends of Early Algebra and researching about nature of subject involving algebra. There is a strong view that arithmetic and algebra have analogous forms and that algebra is on extension to arithmetic. Nevertheless, it is also possible to present a perspective that the fundamental goal and role of symbols and letters are difference between arithmetic and algebra. And, we could recognize that geometry was starting point of algebra trough historical perspectives. To consider these, we extracted some of possible directions to approaches to teach algebra earlier. To access to teaching algebra earlier, following ways are possible. (1) To consider informal strategy of young children. (2) Arithmetic reasoning considered of the algebraic relation. (3) Starting to algebraic reasoning in the context of geometrical problem situation. (4) To present young students to tool of letters and formular.

  • PDF

Boolean Factorization Using Two-cube Non-kernels (2-큐브 비커널을 이용한 부울 분해식 산출)

  • Kwon, Oh-Hyeong;Chun, Byung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4597-4603
    • /
    • 2010
  • A factorization is a very important part of multi-level logic synthesis. The number of literals in a factored form is an estimate of the complexity of a logic function, and can be translated directly into the number of transistors required for implementation. Factored forms are described as either algebraic or Boolean, according to the trade-off between run-time and optimization. A Boolean factored form contains fewer number of literals than an algebraic factored form. In this paper, we present a new method for a Boolean factorization. The key idea is to identify two-cube nonkernel Boolean pairs from given expression. Experimental results on various benchmark circuits show the improvements in literal counts over previous other factorization methods.