• Title/Summary/Keyword: 대류열전 달계수

Search Result 202, Processing Time 0.033 seconds

Non-gray Radiation with Turbulent Convection in the Entrance Region of a Smooth Tube (매끈한 튜브의 입구 영역에서 난류유동에 의한 대류와 비회복사)

  • Seo, T.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.667-680
    • /
    • 1995
  • 튜브 내의 입구영역에서 난류 유동에 의한 대류와 비회복사(non-gray radiation)가 동시에 일어날 때의 열전달특성을 수치해석적으로 연구하였다. 작동유체는 이산화탄소, 수증기, 질소의 혼합가스라고 가정하였다. 지배방정식을 계산하기 위해 유한차분법이 이용되었고, 복사전달방정식을 이차편미분방정식으로 바꾸기 위해 P-1 근사법이 사용되었다. 그리고 혼합가스의 비회흡수계수(non-gray absorption coefficient)는 지수광폭밴드모형(exponential wide band model)을 이용해서 구하였다. 열전달특성에 대한 온도조건의 영향을 조사하기 위해 튜브의 축방향에 대한 평균 온도와 뉴셀트수(Nusselt number)의 변화를 몇 가지 다른 온도조건에 대해 나타내었다. 또한, 가스의 성분조성에 대한 영향을 조사하였으며, 이러한 결과에 기초해서 튜브 내에서 난류유동에 의한 대류와 비화복사가 동시에 일어날 때의 복사 뉴셀트수를 쉽게 예측할 수 있는 방법을 제시하였다.

  • PDF

A Study on the Effects of Fin Length on Natural Convection Heat Transfer from a Inclined Flat Plate (경사평판에서의 핀길이가 자연대류 열전달에 미치는 영향에 관한 연구)

  • 천대희
    • Fire Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.3-8
    • /
    • 1998
  • This study has been conducted experimentally on the effects of natural convection heat transfer characteristics for inclined flat plate with vertical fin in air. The effects of various fin length, flat plate inclined angle and Grashof number are mainly investigated The experimented results are as follows: The mean heat transfer coefficient increase according to the decrease of H/S in the various fin lengh. The mean heat transfer coefficient at H/S-0.5, 1.0, 1.5 for Gr=2.11$\times$103. $\theta$=00 increase by 107%, 43%, 15% than H/S=2.0. The mean heat transfer coefficient decrease with the increase of $\theta$ the inclined angles. The mean heat transfer coefficient at Gr=2.97$\times$103 is constant, at $\theta$= 00 for H/S=0.5 decrease by 33% than $\theta$=90$^{\circ}$. The mean heat transfer coefficient increase as Grashof as Grashof number increase. The mean heat transfer coefficient at Gr=2.31$\times$103, Gr=2.61$\times$103, Gr=2.97$\times$103 for H/S=1.0, $\theta$=0$^{\circ}$increase by 9%, 16%, 28% than Gr=2.11$\times$103.

  • PDF

Investigation of Natural Convective Heat Flow Characteristics of Heat Sink (히트싱크의 자연대류 열유동 특성 분석)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • To ensure proper functioning of electrical and mechanical systems, cooling devices are of great importance. A heat sink is the most common cooling device used in many industries such as the semiconductor, electronic instrument, LED lighting, and automotive industries. To design an optimal heat sink, the required surface area for heat radiation should be calculated based on an accurate expectation of the heat flow rate in the target environment. In this study, the convective heat flow characteristics were numerically investigated for a vertically installed typical heat sink and a horizontally installed one in free convection using ANSYS CFX. Comparative experiments were carried out to reveal the quantitative effect of the installation direction on the cooling performance. Moreover, the result was analyzed using the dimensionless correlation with the Nusselt number and Rayleigh number and compared with well-known theories. Finally, it was observed that the cooling performance of the vertically installed heat sink is approximately 10~15% better than that of the one in natural convection.

Heat Transfer and Flow Characteristics in an Annulus Filled with Aluminum Foam (발포 알루미늄이 삽입된 환형관에서의 열전달 및 유동특성)

  • Noh Joo-Suk;Han Young-Hee;Lee Kye-Bock;Lee Chung-Gu
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.60-66
    • /
    • 2006
  • An experimental investigation on the flow and convective heat transfer characteristics has been carried out far aluminum foam heat sink inserted into the annulus to examine the feasibility as a heat sink. Two aluminum foams or different permeability were selected to provide the friction factor and heat transfer correlations as function of Darcy, Reynolds and Prandtl number. Experimental results show that the friction factor is higher than clear annulus without aluminum foam, while $6\sim10$ times augmentation in Nusselt number is obtained. This technique can be used for the compactness of the heat exchanger.

Forced convective boiling heat transfer for a ternary refrigerant mixture inside a horizontal tube (수평관내 3성분 혼합냉매의 강제대류비등 열전달)

  • 오종택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.912-920
    • /
    • 1999
  • The forced convective boiling heat transfer coefficients of R-407C were measured inside a horizontal tube 6.0mm I.D. and 4.0m long. The heat transfer coefficients increased according to an increase in heat flux at constant mass flux. Because nucleation was completely suppressed in the two-phase flow region with high quality, heat transfer coefficients in forced convective evaporation were higher than those in nucleate boiling region. Average heat transfer coefficients of R-407C were about 30 percent lower than the pure refrigerant correlation, due to mass transfer resistance at the gas-liquid interface. However, the total experimental data shows an agreement with the predicted data for ternary refrigerant mixtures with a mean deviation of 30%.

  • PDF

A Study on the Effect of Fin Pitch of Offsets Strip Fin on Heat Transfer of High Prandtl Fluid (옵셋 스트립 휜의 휜피치가 고 Prandtl 유체 열전달 특성에 미치는 영향)

  • 강덕종;양대일;전승환;정형호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.83-89
    • /
    • 2002
  • In the present study, heat transfer characteristics of oil flow over offset strip fins were predicted by the numerical methods. Oil flow in the plate-fin passage was idealized by 2 dimensions. The flow patterns and heat transfer characteristics were predicted in details. Numerical results shows that the average convective heat transfer coefficients are almost independent on the raws of fins and affected by fin pitches. At the rear face of fin, there exists minimum point of heat transfer coefficients where stream are separated from the fin surfaces. The convective heat transfer coefficients were effected by separation bubbies which appeared at the wake region of offset strip fins.

Finite Element Analysis of Temperature Distribution for Power Transformer (유한요소법을 이용한 전력용변압기의 온도분포해석)

  • Ahn, Hyun-Mo;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.818_819
    • /
    • 2009
  • 본 논문에서는 온도상승의 열원이 되는 권선과 철심의 전력손실을 유한요소법을 이용한 전자계해석과 스타인메츠실험식으로 산정하였다. 온도에 대한 자연대류 열전달계수를 산정하여 경계면에서의 경계조건으로 적용하였다. 열전달 해석을 위해 전력용변압기를 3차원 형상으로 모델링한 후 유한요소법을 이용해 권선과 철심에서의 온도분포를 해석하였다.

  • PDF

Convection Heat-Transfer Characteristics of Ondol-Heated Room (온돌난방공간(溫突暖房空間)의 내표면(內表面) 대류열전달특성(對流熱傳達特性)에 관(關)한 연구(硏究))

  • Sohn, J.Y.;Ahn, B.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.376-385
    • /
    • 1991
  • The purpose of this paper is to propose basic data on convection heat-transfer coefficients in Ondol-heated room. Surface temperatures and several temperatures around each inside surface of wall, floor and ceiling composed of heating room are measured vertically in Ondol-heated model rooms, and the vertical temperature profiles could be expressed by nonlinear equation models. Also, the convection heat transfer phenomena are analysed from the nonlinear equation models. In the results, the convection heat-transfer coefficients of Ondol heated space are suggested by the term of temperature difference between each wall surface and room air temperature and by the relationship between Nusselt number and Rayleigh number of dimensionless numbers.

  • PDF

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel (지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Ra, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.