• Title/Summary/Keyword: 대뇌 피질

Search Result 167, Processing Time 0.022 seconds

Immunohistochemical Localization of Nerve Growth Factor, Glial Fibrillary Acidic Protein and Ciliary Neurotrophic Factor in the Forebrain of the Developing Mongolian Gerbil (발생중인 Mongolian gerbil의 전뇌에서 NGF, GFAP 및 CNTF의 분포)

  • Park, Il-Kwon;Lee, Kyoug-Youl;Song, Chi-Won;Kwon, Hyo-Jung;Park, Mi-Sun;Lee, Mi-Young;Jeong, Young-Gil;Lee, Chul-Ho;Ha, Kwon-Soo;Lee, Kang-Yi;Kim, Moo-Kang
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • The immunohistochemical localization of the nerve growth factor (NGF), glial fibrillary acidic protein (GFAP) and ciliary neurotrophic factor (CNIF) in the developing Mongolian gerbil forebrain was investigated by the immunohistochemical and electron microscopy methods. Generally, the NGF specifically recognizes the neurons, the GFAP does the glia, and the CNIF does the motor neurons. This study demonstrates the location of the NGF, GFAP and CNTF in the developing Mongolian gerbil from the embryonic days 17 (E17) to the postnatal weeks 3 (PNW 3). The NGF was localized at E19 in the olfactocy bulb and the cerebral cortex, expanded to the hippocampus, and the diagonal bond from the late prenatal period to PNW 3. GFAP was observed in the lateral ventricle and the third ventricle at E17, projected into the cerebral cortex at E19. The GFAP was observed to have the largest numbers in several parts of the forebrain at the postnatal days 2 (PND2), while the most numerous CNTF was observed at PNW 2. The CNTF-IR cells were observed only in the postnatal days and were found in the olfactory bulb, cerebral cortex both neuron and neuroglia at PND3. Electron microscopy showed that the NGF, GFAP and CNTF were not related to any connections with any particular subcellular structure. These results suggest that NGF, GFAP and CNTF be related to the neuron and neuroglia at the prenatal and postnatal stages in the developing Mongolian gerbil.

BOLD Responses to Acupuncture on Each Side of ST36 (족삼리 좌우측 자침에 대한 BOLD 반응)

  • Yeo, Sujung;Bae, Seong-In;Choe, Ilwhan;Jahng, Geon-Ho;Lim, Sabina
    • Korean Journal of Acupuncture
    • /
    • v.31 no.1
    • /
    • pp.20-32
    • /
    • 2014
  • Objectives : There has been some controversy about the modulatory effects on brain function during acupuncture on each side of the same acupoint. This study was designed to investigate and compare the blood oxygen level-dependent(BOLD) responses of acupuncture on each side of ST36. Methods : Fourteen healthy subjects were recruited for imaging and received acupuncture or placebo stimulations either on the left or on the right acupoint of ST36 in each scan. For the voxel-wise statistical analysis, one sample T-test and the within-subject analysis of variance(ANOVA) test were performed using SPM8 software. Results : This study showed that acupuncture on each side of ST36 showed different BOLD signal patterns. Higher BOLD responses after acupuncture stimulations at the left ST36 compared to the right were observed mainly in the parahippocampal gyrus(BA 28), dorsolateral prefrontal cortex(DLPFC, BA 44), thalamus, culmen and claustrum. We investigated the different neural responses between rest and activation periods of placebo and acupuncture stimulations on each side of ST36. Acupuncture at the right ST36 elicited activation mainly in the insula, supplementary motor area(SMA) and anterior cingulate cortex(ACC), while acupuncture at the left ST36 elicited activation mainly in the insula, primary somatosensory cortex(SI, BA 2) and DLPFC(BA 44). Conclusions : To our knowledge, this is the first reported functional MRI study directly comparing when needling at the right and at the left side of ST36. This study's preliminary results proved to be evidence of acupuncture's different effects when performed on opposite sides of an acupoint.

SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY FINDINGS IN TOURETTE'S AND CHRONIC MOTOR TIC DISORDER (뚜렛씨병과 만성틱장애의 단일광자방출전산화단층촬영 소견에 관한 연구)

  • Cho, Soo-Churl;Lee, Myung-Chul;Kim, Ja-Sung
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.4 no.1
    • /
    • pp.68-78
    • /
    • 1993
  • The pathophysiology and neural mechanism involved in Tourette's and chronic motor tic disorder are highly controversial. In order to investigate the functional abnormalities of brain. In Tourette's and chronic motor tic disorder, 42 children with Tourette's and chronic motor disorder underwent single photon emission computed tomography(SPECT) using Tc-99m-HM-PAO. The results are summarized as follows : 1) 31.0% (13/42) of this series revealed perfusion defect in cerebral cortex. 2) 4.8% (2/42) revealed perfusion defect in basal ganglia. 3) 4.8(2/42) revealed perfusion defect in thalamus. 4) 16.7%(7/42) showed perfusion defect in cerebellum. 5) The frequency of abnormal perfusion showed no significant difference between tic with and without attention deficit hyperactivity disorder. 6) The frequency of abnormal perfusion showed no significant difference between Tourette's and chronic motor tic disorder. These findings support the hypothesis of a possible involvement of brain dysfunction in the production of Tourette's and chronic motor tic disorder, and quantification of blood flow and co-registration with magnetic resonance imaging will increase the validity of this study.

  • PDF

Activation of Limbic Area due to Oxygen Administration during Visuospatial Task (공간 과제 수행 시 고농도 산소 공급에 의한 변연계 활성화에 관한 연구)

  • Choi, Mi-Hyun;Lee, Su-Jeong;Yang, Jae-Woong;Kim, Ji-Hye;Choi, Jin-Seung;Tack, Gye-Rae;Chung, Soon-Cheol;Kim, Hyun-Jun
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • The purpose of this study is to observe activation of limbic system during performing visuospatial tasks by 21% and 30% oxygen administration. Eight right handed male college students were selected as the subjects for this study. A visuospatial task was presented while brain images were scanned by a 3T fMRI system. The experiment consisted of two runs: one was a visuospatial task under normal air(21% oxygen) condition and the other under hyperoxic air(30% oxygen) condition. The neural activations were observed at the limbic system which is seperated 8 regions such as cingulate gyrus, thalamus, limbic lobe, hypothalamus, hippocampus, parahippocampa gyrus, amygdala, and mammiilary body. By two oxygen levels, activation areas of limbic system are almost identical. Increased neural activations were observed in the cingulate gyrus and thalamus with 30% oxygen administration compared to 21% oxygen. During 30% oxygen administration, improvement of visuospatial task performance has a relation to increase of neural activation of subcortical structures such as thalamus and cingulate gyrus as well as cerebral cortex.

  • PDF

Small animal brain functional MRI study using light stimulation (광자극을 이용한 소동물 뇌 fMRI 연구)

  • Kim, Wook;Park, Yong Sung;Ko, In Ok;Kang, Kyung Joon;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.295-296
    • /
    • 2016
  • 본 연구에서는 LED 광 자극이 뇌의 어느 영역을 자극하여 신경신호를 전달하는지에 관해서 관찰하고자 연구를 진행하였다. 광 자극에 의한 뇌 영역의 활성변화를 관찰하기 위하여 실험용 소동물과 영상장비인 9.4T MRI를 이용하여 연구를 수행 하였다. 실험용 소동물은 Balb/c 마우스를 이용하였으며 기능적 자기공명영상 획득 방법 중 하나인 에코평면영상 기법을 이용하여 뇌 영상을 획득 하였다. 획득한 영상을 바탕으로 뇌 영역의 자극 정도를 확인해보기 위해 영상처리기법인 재편성(realignment), 일치(co-registration), 표준화(normalization), 평활화(smoothing) 방법으로 영상을 전처리 하고, statistical parametric map (SPM12)을 사용하여 분석하였다. 본 연구에서는 광자극이 소동물 뇌 영역 중 하나인 상구(Superior colliculus)영역과 대뇌의 시각피질 (visual cortex, V1) 영역에서 자극을 일으키는 것을 확인할 수 있었다.

  • PDF

Effects of Aquatic Exercise on Vestibulo-motor and Expression of GAP-43 in Diffuse brain Injury Rats (수중운동이 미만성 뇌손상 백서의 전정-운동 및 GAP-43 발현에 미치는 영향)

  • Yang, Seung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.656-664
    • /
    • 2009
  • The purposes of this study were to examine whether aquatic exercise has influence on the neuroplasticity and vestibulo-motor function in diffuse brain injury rats. 80 Sprague-Dawley rats were assigned to four groups; Group I: control group (n=20), Group II: aquatic exercise (n=20), Group III: treadmill exercise with change of velocity and inclination (n=20), Group IV: simple treadmill exercise (n=20). And we applied exercise each groups for 3 weeks except Group I. Before the rats were sacrificed to identify immunohistochemistry study at each time of measurement day, Rota-Rod test was given to assess changes in vestibulomotor function. then, the immunohistochemistry study of GAP-43 in discrete regions of the rat brain was performed to measure changes in neuroplasticity. The results demonstrate that aquatic exercise group is more effective than other groups. expression of GAP-43 and vestibulo-motor function were increased most in aquatic exercise group. Therefore, this study suggest that aquatic exercise may effective therapeutic approach to increase neuroplasticity and vestibulo-motor function in traumatic brain injury.

The Cortical Activation by Functional Electrical Stimulation, Active and Passive Movement (능동 및 수동 운동과 기능적 전기자극에 의한 대뇌 피질의 활성화)

  • Kwon, Yong-Hyun;Jang, Sung-Ho;Han, Bong-Soo;Choi, Jin-Ho;Lee, Mi-Young;Chang, Jong-Sung
    • Physical Therapy Korea
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • We investigated the activation of the cerebral cortex during active movement, passive movement, and functional electrical stimulation (FES), which was provided on wrist extensor muscles. A functional magnetic resonance imaging study was performed on 5 healthy volunteers. Tasks were the extension of right wrist by active movement, passive movement, and FES at the rate of .5 Hz. The regions of interest were measured in primary motor cortex (M1), primary somatosensory cortex (SI), secondary somatosensory cortex (SII), and supplementary motor area (SMA). We found that the contralateral SI and SII were significantly activated by all of three tasks. The additional activation was shown in the areas of ipsilateral S1 (n=2), and contralateral (n=1) or ipsilateral (n=2) SII, and bilateral SMA (n=3) by FES. Ipsilateral M1 (n=1), and contralateral (n=1) or ipsilateral SII (n=1), and contralateral SMA (n=1) were activated by active movement. Also, Contralateral SMA (n=3) was activated by passive movement. The number of activated pixels on SM1 by FES ($12{\pm}4$ pixels) was smaller than that by active movement ($18{\pm}4$ pixels) and nearly the same as that by passive movement ($13{\pm}4$ pixels). Findings reveal that active movement, passive movement, and FES had a direct effect on cerebral cortex. It suggests that above modalities may have the potential to facilitate brain plasticity, if applied with the refined-specific therapeutic intervention for brain-injured patients.

  • PDF

The Effect of Neurofeedback Training on Sex differences groups in Adolescence (청소년기 성별에 따른 뉴로피드백 훈련의 효과 연구)

  • Byun, Youn-Eon;Park, Pyong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1171-1177
    • /
    • 2011
  • The purpose of this study was to verify the effect of neurofeedback training on adolescence groups that are different in sex. The experiment was carried out with 45 students who living in Yong-in of Kyonggi Province. From November 2009 to March 2010, each were under training about 20-25 times, 2-3 times a week, during 20 to 50 minutes, was conducted by limiting training. Statistical data collected were processed with the SPSS 12.0. For the purposes of t-test showed that differences in the effects of sex. The result, The effects of neurofeedback training, according to the sex differences were confirmed. only boys showed stress resistance quotient, only girls showed emotional quotient. they also have differences in some part of cerebral cortex that are responsible for stress and emotion. As a result, neurofeedback training affects the prefrontal lobe.

The Effect on Activity of Cerebral Cortex by Key-point Control of The Adult Hemiplegia with fMRI (fMRI를 이용한 성인 편마비의 항조절점 운동이 대뇌피질의 활성화에 미치는 효과)

  • Lee Won-Kil
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.295-345
    • /
    • 2003
  • This study investigated activation of cerebral cortex in patients with hemiplegia that was caused by neural damage. Key-point control movement therapy of Bobath was performed for 9 weeks in 3 subjects with hemiplegia and fMRI was used to compare and analyze activated degree of cerebral cortex in these subjects. fMRI was conducted using the blood oxygen level-dependent(BOLD) technique at 3.0T MR scanner with a standard head coil. The motor activation task consisted of finger flexion-extension exercise in six cycles(one half-cycles = 8 scans = $3\;sec{\times}\;8\;=\;24\;sec$). Subjects performed this task according to visual stimulus that sign of right hand or left hand twinkled(500ms on, 500ms off). After mapping activation of cerebral motor cortex on hand motor function, below results were obtained. 1. Activation decreased in primary motor area, whereas it increased in supplementary motor area and visual association area(p<.001). 2. Activation was observed in bilateral medial frontal gyrus, middle frontal gyrus of left cerebrum, inferior frontal gyrus, inter-hemispheric, fusiform gyrus of right cerebrum, superior parietal lobule of parietal lobe and precuneus in subjedt 1, parahippocampal gyrus of limbic lobe and cingulate gyrus in subject 2, and inferior frontal gyrus of right frontal lobe, middle frontal gyrus, and inferior parietal lobule of left cerebrum in subject 3 (p<.001). 3. Activation cluster extended in declive of right cellebellum posterior lobe in subject 1, culmen of anterior lobe and declive of posterior lobe in subject 2, and dentate gyrus of anterior lobe, culmen and tuber of posterior lobe in subject 3 (p<.001). In conclusion, these data showed that Key-point control movement therapy of Bobath after stroke affect cerebral cortex activation by increasing efficiency of cortical networks. Therefore mapping of brain neural network activation is useful for plasticity and reorganization of cerebral cortex and cortico-spinal tract of motor recovery mechanisms after stroke.

  • PDF

Thalamic Syndrome with Related Cortical Hypoperfusion on $^{99m}Tc-HMPAO$ Brain SPECT (시상 증후군에 동반된 대뇌 피질 혈류 변화에 대한 $^{99m}Tc-HMPAO$ Brain SPECT)

  • Kim, Eun-Kyung;Chung, Tae-Sub;Suh, Jung-Ho;Kim, Dong-Ik;Lee, Jong-Doo;Park, Chang-Yoon;Hong, Yong-Kook;Lee, Myung-Sik
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 1992
  • Spontaneous pain and painful overreaction to external stimuli resulting from lesion confined central nervous system (CNS) were named as thalamic syndrome. Thalamic lesion and decreased regional cortical perfusion thought to the pathogenesis of thalamic syndrome due to decreased function of thalamocortical tract. We performed $^{99m}Tc-HMPAO$ regional cerebral perfusion in 10 patients with clinical diagnosis of thalamic syndrome due to thalamic lesion or near the thalamic lesion at Yonsei University Hospital, from January 1989 to August 1991. In contrast to five patients with lesions near the thalamus who did not show secondarily decreased perfusion at cerebral cortex, four among the five patients with thalamic lesions revealed decreased cortical perfusion in the ipsilateral cerebral cortex on brain SPECT. These phenomena may suggest the loss of afferent activating stimuli from the thalamus led to decreased neuronal activity and the followitng hypoperfusion of cerebral cortex, and might be one of the indirect signs for suggesting presence of the thalamocortical tract. A causal relationship between cortical hypoperfusion and neuropsychological deficit is strongly suggested.

  • PDF