• Title/Summary/Keyword: 대기오염물질 배출량

Search Result 296, Processing Time 0.029 seconds

A Study on Improvement of Air Quality Dispersion Model Application Method in Environmental Impact Assessment (II) - Focusing on AERMOD Model Application Method - (환경영향평가에서의 대기질 확산모델 적용방법 개선 연구(II) - AERMOD 모델 적용방법을 중심으로 -)

  • Suhyang Kim;Sunhwan Park;Hyunsoo Joo;Minseop So;Naehyun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.4
    • /
    • pp.203-213
    • /
    • 2023
  • The AERMOD model was the most used, accounting for 89.0%, based on the analysis of the environmental impact assessment reports published in the Environmental Impact Assessment Information Support System (EIASS) between 2021 and 2022. The mismatch of versions between AERMET and AERMOD was found to be 25.3%. There was the operational time discrepancy of 50.6% from industrial complexes, urban development projects between used in the model and applied in estimating pollutant emissions. The results of applying various versions of the AERMET and AERMOD models to both area sources and point sources in both simple and complex terrain in the Gunsan area showed similar values after AERMOD version 12 (15181). Emissions are assessed as 24-hour operation, and the predicted concentration in both simple and complex terrain when using the variable emission coefficient option that applies an 8-hour daytime operation in the model is lowered by 37.42% ~ 74.27% for area sources and by 32.06% ~ 54.45% for point sources. Therefore, to prevent the error in using the variable emission coefficient, it is required to clearly present the emission calculation process and provide a detailed explanation of the composition of modeling input data in the environmental impact assessment reports. Also, thorough reviews by special institutions are essential.

An Estimation of Age-, Power-, and Type-Specific Emission Inventories for Construction Equipments Using Improved Methodologies and Emission Factors (배출계수 개발 및 배출량 산정 체계 고도화를 통한 건설기계의 연식, 출력 및 기종별 대기오염물질 배출량 산정)

  • Jin, Hyungah;Lee, Taewoo;Park, Hana;Son, Jihwan;Kim, Sangkyun;Hong, Jihyung;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.555-568
    • /
    • 2014
  • The construction equipment is one of the major sources for hazardous air pollutants in Korea, and the its management has been of great concern recently. The objective of this study was to estimate each contribution of emission of construction equipments according to their production year, electric power consumption and type. To achieve this goal, we developed pollutant emission factors for the machineries manufactured after 2009, which are excluded from the present framework of Korean air pollutants inventory, CAPSS. More than 800 data obtained from emission investigations were utilized for the estimation. Compared with the previous estimation, the scheme used this study was modified to incorporate new emission factors as well as to include the corresponding activity data. Such improvement allow us to gain more detailed emission informations which are better characterized by specifications of construction equipments. The total amount of pollutants emitted from construction equipments in 2011 were estimated as 126.8, 7.0, 58.3, and 17.0 kton for $NO_x$, PM, CO, and VOC, respectively. The estimation results indicate that the increase in the emission of equipments is significantly related to their age and power consumption. The emissions of the older ones manufactured from 1992~1996 were estimated to be the contribution ranged from 23.7% to 26.8%, whereas the newer ones (2009~2011) showed the attributions of 11.3~21.5%. In addition, the results show that the emission of each equipment was increased with the increase in the electric power consumption of engine, probably due to their average output power. Among the nine types of machinery compared, excavators and forklifts were investigated to contribute relatively higher emissions in the level of 39.8~44.0% and 32.0~34.2%, respectively.

A study on the enhancement and performance optimization of parallel data processing model for Big Data on Emissions of Air Pollutants Emitted from Vehicles (차량에서 배출되는 대기 오염 물질의 빅 데이터에 대한 병렬 데이터 처리 모델의 강화 및 성능 최적화에 관한 연구)

  • Kang, Seong-In;Cho, Sung-youn;Kim, Ji-Whan;Kim, Hyeon-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.1-6
    • /
    • 2020
  • Road movement pollutant air environment big data is a link between real-time traffic data such as vehicle type, speed, and load using AVC, VDS, WIM, and DTG, which are always traffic volume survey equipment, and road shape (uphill, downhill, turning section) data using GIS. It consists of traffic flow data. Also, unlike general data, a lot of data per unit time is generated and has various formats. In particular, since about 7.4 million cases/hour or more of large-scale real-time data collected as detailed traffic flow information are collected, stored and processed, a system that can efficiently process data is required. Therefore, in this study, an open source-based data parallel processing performance optimization study is conducted for the visualization of big data in the air environment of road transport pollution.

A Study on Introduction of Greenhouse Gas Emission Trading Scheme in Korea (우리나라 온실가스 배출권거래제도의 도입에 관한 연구)

  • Lho, Sang-Whan
    • Journal of Environmental Policy
    • /
    • v.8 no.4
    • /
    • pp.95-124
    • /
    • 2009
  • This study aims to introduce greenhouse gas emission trading in Korea as a highly cost-effective mechanism for controlling emissions. The Basic Act on Low-Carbon Green Growth will cover methods of emissions allocation, national inventory, and trading systems (i.e. emissions trading platforms, national registry,and clearing and settlement platforms). The Korean emission scheme will be based on the Korean Climate Change Act proposed by the National Assembly and Government with a cap-and-trade scheme. The national allowances will be allocated by the hybrid system. To establish the national inventory, TRADEMARKS (Telemetering System) and emissions factors are effective for greenhouse gas emissions measurement. It will likewise be effective for the national registry to be implemented via a Korean Integrated Registry, the emissions trading platform via the KRX (Korean Exchange), and the clearing and settlement platform via the KSD (Korean Securities Depository). In other words, the KRX will manage product development and marketing for Korean Carbon Financial Instruments (including commodities, futures, and options contracts) listed and admitted to trading on the KRX. All emissions trades will be standardized and cleared by the KSD.

  • PDF

Feasibility Evaluation of Co-Incineration with MSW for Efficient Recycling of the Rejects after Separation Processes in MRF (재활용 기반시설에서 발생하는 선별 잔재물의 자원화를 위한 도시생활폐기물과의 혼합소각 가능성 평가)

  • Shin, Taek-Soo;Sung, Baek-Nam;Yeon, Ik-Jun;Cho, Byung-Yeol;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.767-773
    • /
    • 2011
  • The purpose of this study was to investigate the possibility of an alternative fuel resource by incinerating a mix of combustible MSW (municipal solid waste) and offals after separating recyclable material at the MRF (material recovery facilities) location. We analyzed the physical and chemical properties including the 3-contents, the calorific value, and chemical compositions of the separation rejects in MRF, and compared the results with combustible MSW. Moreover, we experimented the trend of combustible properties and the concentration change of air pollutants at mixed incineration in the MSW incinerator. According to the results of the experiment, the separation rejects showed higher heating value (5,865 kcal/kg), and lower moisture and ash content than combustible MSW. Since we have incinerated MSW in the MSW incinerator mixing the offals at 30% and 50% respectively, we know that the change of the concentration of dust, $SO_2$, $NO_2$, and CO did not appear significant, and not exceed the pollutants emission regulation. But, considering the enhancement of the HCl emission concentration (max. 33.7 ppm) at the co-incineration of the 50% offals, we believe that the proper mixing ratio of the separation rejects would become within 30%.

Global Fate of Persistent Organic Pollutants: Multimedia Environmental Modelling and Model Improvement (잔류성 유기오염물질의 전 지구적 거동: 다매체 환경모델의 결과해석 및 개선방안)

  • Choi, Sung-Deuk;Chang, Yoon-Seok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.24-31
    • /
    • 2007
  • Global fates of polychlorinated biphenyl(PCB) were investigated with a fugacity based multimedia transport and fate model, Globe-POP(persistent organic pollutant). The accumulation of PCB was directly affected by the emission patterns of PCB into the atmosphere and surface areas of environmental compartments. Partition coefficients and reaction rates also influenced on the accumulation patterns of PCB. The emission patterns of PCB in 10 climate zones were consistent for the past 70 years, while the contribution of PCB in high-latitude zones to the globe has increased by cold condensation. Considering the amounts of emission and accumulation of PCB, the North temperature zone is regarded as an important source and sink of PCB. Meanwhile, in spite of no significant sources, POPs accumulate in Antarctic environments mainly due to extremely low temperature. Finally we suggested that a global water balance accounting for snow/ice should be incorporated into multimedia environmental models for high-latitude zones and polar regions with the seasonal snow pack and/or permanent ice caps. The modified model will be useful to evaluate the influence of climate change on the fate of POPs.

Evaluation of Fine Dust Diffusion and Contamination Degree : Focused on the Operation Status of Donghae Port (항만 인근 미세먼지 노출 영향권 및 오염도 분석 :동해항 운영현황을 중심으로)

  • Hwang, Je-Ho;Kim, Si-Hyun;Kang, Dal-Won
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • Donghae Port is adjacently located to a residential area wherein 26,933 generations are creating a living environment. The areas comprise Song-jeong village (5,754 generations) and Bukp-yeong village (21,179 generations). Major cargoes handled in Donghae Port are dusty limestone, cement, anthracite, and bituminous coal, etc. In the process of handling such cargoes, air pollutants including oxide dust and fine dust which adversely impact the living conditions and health of residents are generated, causing air pollution in the vicinity of the port. Currently, Donghae Port is making an effort to improve the operation environment of the infrastructure and equipment in stages, for the purpose of reducing air pollutant emissions caused by the port industries in a long-term perspective. In this study, the sphere of influence of fine dust exposure and the degree of air pollution in the surrounding area were analyzed such as the state of fine dust concentration and diffusion in the vicinity of Donghae Port, fine dust diffusion pattern and spatial distribution of high-concentration considering wind direction and speed characteristics during the day and seasonal cycles. A more effective plan to reduce the concentration of fine dust in nearby areas by combining reduction plan, is being developed in terms of improvement regarding port infrastructure and equipment, and reduction measures considering the characteristics of the atmosphere environment according to the daytime, nighttime and season.

Estimation of Fugitive Emission of Organic Hazardous Air Pollutants from Oil Refinery Industry (석유정제산업에서의 유기성 유해대기오염물질의 비산배출량 산정)

  • Yang, Sung-Bong;Yu, Mee-Seon;Lee, Young-Joon;Yoo, Eun-Jin;Choi, Sung-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.229-237
    • /
    • 2008
  • Hazardous air pollutants emitted from the oil refinery plant were surveyed from 1993 US and 2005 Korean TRI data. Toluene, xylene, methanol, MTBE and n-hexane, relatively large in amount of fugitive emission, are considered as candidates of newly designated HAPs in Korea. The sealed oil pump, one of equipments among fugitive sources in the crude oil distillation tower was examined for the estimation of amounts of annual HAPs emissions according to several calculation methods using registered emission factors. Emission rates showed to be decreased with following calculation factors; average emission factor>pegged emission factor>concentration emission factor>correlation equation. Annual emission amounts of benzene, toluene, xylene. ethyl benzene and nhexane from the distillation tower were estimated and amounts of these HAPs calculated with TVOC concentrations obtained from LDAR program and correlation equations showed only 6% of those from using concentration factors.

Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas (배출가스의 질소산화물과 이산화황 동시 저감 기술)

  • Park, Hyun-Woo;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.607-618
    • /
    • 2017
  • Harmful air pollutants are exhausted from the various industrial facilities including the coal-fired thermal power plants and these substances affects on the human health as well as the nature environment. In particular, nitrogen oxides ($NO_x$) and sulfur dioxide ($SO_2$) are known to be causative substances to form fine particles ($PM_{2.5}$), which are also deleterious to human health. The integrated system composed of selective catalytic reduction (SCR) and wet flue gas desulfurization (WFGD) have been widely applied in order to control $NO_x$ and $SO_2$ emissions, resulting in high investment and operational costs, maintenance problems, and technical limitations. Recently, new technologies for the simultaneous removal of $NO_x$ and $SO_2$ from the flue gas, such as absorption, advanced oxidation processes (AOPs), non-thermal plasma (NTP), and electron beam (EB), are investigated in order to replace current integrated systems. The proposed technologies are based on the oxidation of $NO_x$ and $SO_2$ to $HNO_3$ and $H_2SO_4$ by using strong aqueous oxidants or oxidative radicals, the absorption of $HNO_3$ and $H_2SO_4$ into water at the gas-liquid interface, and the neutralization with additive reagents. In this paper, we summarize the technical improvements of each simultaneous abatement processes and the future prospect of technologies for demonstrating large-scaled applications.

A Study on Reduction Effects of Air Pollutant Emissions by Automotive Fuel Standard Reinforcement (자동차연료 기준강화에 따른 대기오염물질 배출량 저감효과)

  • Lim, Cheol-Soo;Hong, Ji-Hyung;Kim, Jeong-Soo;Lee, Jong-Tae;Lim, Yun-Sung;Kim, Sang-Kyu;Jeon, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • The air pollutants from vehicle exhaust gas are affected by many factors including fuel qualities, engine and vehicle technologies, driving patterns. In particular, fuel qualities and after-treatment devices could directly affect the emission level of pollutants. The pollutant reduction characteristics that caused by enforced fuel quality standard were analyzed. Three types of test fuel were selected in accordance with Korean automotive fuel standard in 2006, 2009, 2012 and used for vehicle emission test in chassis dynamometer. European COPERT correction equation of fuel impact was considered as reference information to quantify the vehicle emission test results. The contribution rates of exhaust emission by COPERT correction equation showed that aromatic compounds and oxygen contents in gasoline fuel was most important. In case of diesel fuel, cetane index and polycyclic aromatic compounds accounted for the greater part. The exhaust emission effects by COPERT correction equation revealed that CO and VOC was increased 0.86%, 1.57% respectively in after 2009 gasoline when compared to before 2009 gasoline fuel. In case of light-duty diesel vehicle CO, VOC and PM were decreased in range of 3~7%. The result from this study could be provided for developing future fuel standards and be used to fundamental information for Korean clean air act.