• Title/Summary/Keyword: 대기압하중

Search Result 6, Processing Time 0.019 seconds

Precision Improvement of GPS Height Time Series by Correcting for Atmospheric Pressure Loading Displacements (대기압하중에 의한 지각변위 보정을 통한 GPS 수직좌표 시계열 정밀도 향상)

  • Kim, Kyeong-Hui;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.599-605
    • /
    • 2009
  • Changes of atmospheric pressures cause short- and long-term crustal deformations and thus become error sources in the site positions estimated from space geodesy equipments. In this study, we computed daily displacements due to the atmospheric pressure loading (ATML) at the 14 permanent GPS sites operated by National Geographic Information Institute. And the 10-year GPS data collected at those stations were processed to create a continuous time series of the height estimate. Then, we corrected for the ATML from the GPS height time series to see if the correction changes the site velocity and improves the precision of the time series. While the precision improved by about 4% on average, the velocity change was not significant at all. We also investigated the overall characteristics of the ATML in the southern Korean peninsula by computing the ATML effects at the inland grid points with a $0.5^{\circ}{\times}0.5^{\circ}$ spatial resolution. We found that ATML displacements show annual signals and those signals can be fitted with sinusoidal functions. The amplitudes were in the range of 3-4 mm, and they were higher at higher latitudes and lower at the costal area.

Effects of Earth's Atmosphere on Terrestrial Reference Frame : A Review (지구 대기가 지구 기준계에 미치는 영향 : 기존 모델 분석)

  • Na, Sung-Ho;Cho, Jungho
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.133-142
    • /
    • 2015
  • Displacement of the Earth's surface due to atmospheric loading has been recognized since a century years ago, and its accurate estimation is required in present day geodesy and surveying, particularly in space geodesy. Atmospheric load deformation in continental region can readily be calculated with the given atmospheric pressure field and the load Green's function, and, in near coastal area, approximate model is used for the calculation. The changes in the Earth's atmospheric circulation and the seasonal variation of atmospheric pressure on two hemispheres of the Earth are the each main causes of variation of the Earth's spin angular velocity and polar motion respectively. Wind and atmospheric pressure do the major role in other periodic and non-periodic perturbations of the positions in the Earth's reference frame and variations in the Earth's spin rotational state. In this reviewing study, the developments of related theories and models are summarized along with brief description of phenomena, and the geodetic perturbing effects of a hypothetical typhoon passing Korea are shown as an example. Finally related existing problems and further necessary studies are discussed in general.

Dry Sliding Wear Behavior of Carbide-Particle-Reinforced 7075 Al Alloy Matrix Composites (탄화물(SiC, TiC, $B_4C$ ) 입자 강화 7075 Al 합금 기지 복합재료의 건식 미끄럼 마멸 거동)

  • 강석하;박형철;강신철;김용석
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.27-27
    • /
    • 2003
  • 무가압침투법으로 제조된 부피분율 10~24% SiC, TiC, B$_4$C 탄화물 입자강화 7075 Al 합금 기지 복합재료의 건식 미끄럼 마멸거동을 강화입자의 종류, 크기 및 부피 분율을 변수로 연구하였다. 미끄럼 마멸 시험은 pin-on-disk 형태의 마멸 시험기를 사용하여, AISI 52100 베어링강을 상대재로 상온 대기 중에서 실시되었다. 마멸특성의 분석과 마멸기구의 규명을 위하여 마멸면과 마멸단면을 SEM, EDS를 이용하여 분석하였다. 제조된 복합재료의 압축 시험을 통하여 측정된 항복강도와 가공경화지수는 서로 반비례하였고, 각 시편간의 경도 차는 크지 않았다. 마멸 시험결과, 크기 및 부피 분율이 7$\mu\textrm{m}$ !0%인 SiC 입자로 강화된 복합재료를 제외하고, 전체 복합재료 시편은 7075 Al 기지 합금에 비해 낮은 마멸 속도를 보였다. 10N 이하의 저하 중에서는 강화상의 종류와 상관없이 복합재료는 낮은 마멸 속도를 보였고, 25N 이상의 고하중에서는 TiC 입자강화 복합재료가 가장 낮은 마멸 속도를, SiC 입자강화 복합재료가 가장 높은 마멸 속도를 나타내었다. 강화 입자의 크기 및 부피 분율이 동일한 경우 SiC 입자로 강화된 복합재료가 가장 낮은 내마멸성을 나타내었다. 강화상의 크기 및 부피 분율이 증가함에 따라 미소 마멸에서 격렬 마멸로의 천이 하중이 증가하였다.

  • PDF

Development of Evaluation Technique for Hydrogen Embrittlement Behavior of Metallic Materials Using in-situ SP Testing under Pressurized Hydrogen Gas Conditions (고압수소가스하 in-situ SP시험법을 사용한 금속재료의 수소취화거동 평가기법 개발)

  • Shin, Hyung-Seop;Kim, Ki-Hyun;Baek, Un-Bong;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1377-1382
    • /
    • 2011
  • Recently, alternative and novel energy resources have been developed for use in the future because of the current environmental problems and exhaustion of fossil energy resources. Hydrogen energy has many merits, such as its environmental friendliness, easy storage, and easy production, but it also has disadvantages, in that it is highly combustible and explosive. In this study, a test procedure using a simple SP test under highly pressurized hydrogen gas conditions was established. In order to evaluate its applicability, SP tests were carried out using a stainless steel (SUS316L) sample under atmospheric, pressurized helium, and pressurized hydrogen gas conditions. The results under the pressurized hydrogen gas condition showed fissuring and produced a reduction of the elongation in the plastic instability region due to hydrogen embrittlement, showing the effectiveness of the current in-situ SP test.

Characteristics of Energy Dissipation in Nano Shock Suspension System Using Silica Gel (세라믹 분말을 이용한 나노 충격 완화 장치의 에너지 소산 효율 특성에 대한 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.17-22
    • /
    • 2003
  • This paper presents an experimental investigation of a reversible colloidal seismic damper, which is statically loaded, The porous matrix is composed from silica gel (labyrinth or central-cavity architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis are described. Influence of the pare and particle diameters, particle architecture and length of the grafted molecule upon the reversible colloidal damper hysteresis is investigated, for distinctive types and mixtures of porous matrices, Variation of the reversible colloidal damper dissipated energy and efficiency with temperature, pressure, is illustrated.

Evaluation of Yield Surfaces of Epoxy Polymers Considering the Influence of Crosslinking Ratio: A Molecular Dynamics Study (분자동역학 해석 기반 가교율에 따른 에폭시 폴리머의 항복 표면 형상 평가)

  • Jinyoung Kim;Hyungbum Park
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.369-376
    • /
    • 2023
  • This study focuses on investigating the influence of epoxy polymer crosslinking density, a crucial aspect in composite material matrices, on the yield surface using molecular dynamics simulations. Our approach involved generating epoxy models with diverse crosslinking densities and subjecting them to both uniaxial and multiaxial deformation simulations, accounting for the elasto-plastic deformation behaviors. Through this, we obtained key mechanical parameters including elastic modulus, yield point, and strain hardening coefficient, all correlated with crosslinking conversion ratios. A particularly noteworthy finding is the rapid expansion of the yield surface in the biaxial compression region with increasing crosslinking ratios, compared to the uniaxial tensile region. This unique behavior led to observable yield surface variations, indicating a significant pressure-dependent relationship of the yield surface considering plastic strain and crosslinking conversion ratio. These results contribute to a deeper understanding of the complex interplay between crosslinking density and plastic mechanical response, especially in the aspect of multiaxial deformation behaviors.