• Title/Summary/Keyword: 대기모델

Search Result 1,695, Processing Time 0.03 seconds

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors (GNSS 가강수량과 기상인자의 상호 연관성 분석)

  • Jae Sup, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation.

Groundwater Recharge Evaluation on Yangok-ri Area of Hongseong Using a Distributed Hydrologic Model (VELAS) (분포형 수문모형(VELAS)을 이용한 홍성 양곡리 일대 지하수 함양량 평가)

  • Ha, Kyoochul;Park, Changhui;Kim, Sunghyun;Shin, Esther;Lee, Eunhee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, one of the distributed hydrologic models, VELAS, was used to analyze the variation of hydrologic elements based on water balance analysis to evaluate the groundwater recharge in more detail than the annual time scale for the past and future. The study area is located in Yanggok-ri, Seobu-myeon, Hongseong-gun, Chungnam-do, which is very vulnerable to drought. To implement the VELAS model, spatial characteristic data such as digital elevation model (DEM), vegetation, and slope were established, and GIS data were constructed through spatial interpolation on the daily air temperature, precipitation, average wind speed, and relative humidity of the Korea Meteorological Stations. The results of the analysis showed that annual precipitation was 799.1-1750.8 mm, average 1210.7 mm, groundwater recharge of 28.8-492.9 mm, and average 196.9 mm over the past 18 years from 2001 to 2018 in the study area. Annual groundwater recharge rate compared to annual precipitation was from 3.6 to 28.2% with a very large variation and average 14.9%. By the climate change RCP 8.5 scenario, the annual precipitation from 2019 to 2100 was 572.8-1996.5 mm (average 1078.4 mm) and groundwater recharge of 26.7-432.5 mm (average precipitation 16.2%). The annual groundwater recharge rates in the future were projected from 2.8% to 45.1%, 18.2% on average. The components that make up the water balance were well correlated with precipitation, especially in the annual data rather than the daily data. However, the amount of evapotranspiration seems to be more affected by other climatic factors such as temperature. Groundwater recharge in more detailed time scale rather than annual scale is expected to provide basic data that can be used for groundwater development and management if precipitation are severely varied by time, such as droughts or floods.

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.

Disaster Risk Assessment using QRE Assessment Tool in Disaster Cases in Seoul Metropolitan (서울시 재난 사례 QRE 평가도구를 활용한 재난 위험도 평가)

  • Kim, Yong Moon;Lee, Tae Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • This study assessed the risk of disaster by using QRE(Quick Risk Estimation - UNISDR Roll Model City of Basic Evaluation Tool) tools for three natural disasters and sixteen social disasters managed by the Seoul Metropolitan Government. The criteria for selecting 19 disaster types in Seoul are limited to disasters that occur frequently in the past and cause a lot of damage to people and property if they occur. We also considered disasters that are likely to occur in the future. According to the results of the QRE tools for disaster type in Seoul, the most dangerous type of disaster among the Seoul city disasters was "suicide accident" and "deterioration of air quality". Suicide risk is high and it is not easy to take measures against the economic and psychological problems of suicide. This corresponds to the Risk ratings(Likelihood ranking score & Severity rating) "M6". In contrast, disaster types with low risk during the disaster managed by the city of Seoul were analyzed as flooding, water leakage, and water pollution accidents. In the case of floods, there is a high likelihood of disaster such as localized heavy rains and typhoons. However, the city of Seoul has established a comprehensive plan to reduce floods and water every five years. This aspect is considered to be appropriate for disaster prevention preparedness and relatively low disaster risk was analyzed. This corresponds to the disaster Risk ratings(Likelihood ranking score & Severity rating) "VL1". Finally, the QRE tool provides the city's leaders and disaster managers with a quick reference to the risk of a disaster so that decisions can be made faster. In addition, the risk assessment using the QRE tool has helped many aspects such as systematic evaluation of resilience against the city's safety risks, basic data on future investment plans, and disaster response.

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.

An Analysis of the Effect of Reducing Temperature and Fine Dust in the Roadside Tree Planting Scenario (가로수 식재 시나리오에 따른 기온 및 미세먼지 저감 효과 분석)

  • Jeong-Hee EUM;Jin-Kyu MIN;Ju-Hyun PARK;Jeong-Min SON;Hong-Duck SOU;Jeong-Hak OH
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.68-81
    • /
    • 2023
  • This study aims to establish a scenario based on the spacing and arrangement of the roadside trees to reduce heat waves and fine dust in cities that occurred during the urbanization process and to quantitatively analyze the degree of reduction. The ENVI-met 5.0.2v model, a micro-climate simulation program, was used to analyze the degree of improvement in the thermal environment and fine dust according to the roadside tree scenario. As a result of temperature analysis according to street tree spacing, the narrower the distance between roadside trees, the lower the temperature during the day as the number of planted trees increased, and a similar pattern was shown regardless of the distance between roadside trees in the morning and evening. In the case of fine dust emitted from the road, the concentration of fine dust increased slightly due to the increase in roadside trees, but the concentration of sidewalks where people walk increased slightly or there was no difference because of blocking fine dust on trees. The temperature according to the arrangement of street trees tended to decrease as the number of planted trees increased as the arrangement increased. However, not only the amount of trees but also the crown projected area was judged to have a significant impact on the temperature reduction because the temperature reduction was greater in the scenario of planting the same amount of trees and widening the interval of arrangement. In terms of the arrangement, the fine dust concentration showed a difference from the results according to the interval, suggesting that the fine dust concentration may change depending on the relationship between the main wind direction and the tree planting direction. By quantitatively analyzing the degree of thermal environment and fine dust improvement caused by roadside trees, this study is expected to promote policies and projects to improve the roadside environment efficiently, such as a basic plan for roadside trees and a project for wind corridor forests.

Trade-off Analysis Between National Ecosystem Services Due to Long-term Land Cover Changes (장기간 토지피복 변화에 따른 국내 생태계서비스 간 상쇄효과(Trade-off) 분석)

  • Yoon-Sun Park;Young-Keun Song
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.204-216
    • /
    • 2024
  • Understanding the trade-off effect in ecosystem services and measuring the interrelationships between services are crucial for managing limited environmental resources. Accordingly, in this study, we identified the dominant trends and increases and decreases in ecosystem services derived from changes in land cover over about 30 years and tracked changes in the relationships between ecosystem services that occurred over time. Through it, we determined the relationship between land cover changes and ecosystem service changes, as well as the distinct characteristics of service changes in different areas. The research primarily utilized the InVEST model, an ecosystem service assessment model. After standardizing the evaluation results between 0 and 1, it went through principal component analysis, a dimensionality reduction technique, to observe the time-series changes and understand the relationships between the services. According to the research results, the area of urbanized regions dramatically increased between 1989 and 2019, while forests showed a significant increase between 2009 and 2019. Between 1989 and 2019, the national ecosystem service supply witnessed a 13.9% decrease in water supply, a 10.5% decrease in nitrogen retention, a 2.6% increase in phosphorus retention, a 0.9% decrease in carbon storage, a 1.2% increase in air purification, and a 3.4% decrease in habitat quality. Over the past 30 years, South Korea experienced an increase in urbanized areas, a decrease in agricultural land, and an increase in forests, resulting in a trade-off effect between phosphorus retention and habitat quality. This study concluded that South Korea's environment management policies contribute to improving ecosystem quality, which has declined due to urbanization, and maximizing ecosystem services. These findings can help policymakers establish and implement forestry policies focusing on sustainable environmental conservation and ecosystem service provision.

A Comparative Study on Factors Affecting Satisfaction by Travel Purpose for Urban Demand Response Transport Service: Focusing on Sejong Shucle (도심형 수요응답 교통서비스의 통행목적별 만족도 영향요인 비교연구: 세종특별자치시 셔클(Shucle)을 중심으로)

  • Wonchul Kim;Woo Jin Han;Juntae Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.132-141
    • /
    • 2024
  • In this study, the differences in user satisfaction and the variables influencing the satisfaction with demand response transport (DRT) by travel purpose were compared. The purpose of DRT travel was divided into commuting/school and shopping/leisure travel. A survey conducted on 'Shucle' users in Sejong City was used for the analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis was applied to minimize the overfitting problems of the multilinear model. The results of the analysis confirmed the possibility that the introduction of the DRT service could eliminate the blind spot in the existing public transportation, reduce the use of private cars, encourage low-carbon and public transportation revitalization policies, and provide optimal transportation services to people who exhibit intermittent travel behaviors (e.g., elderly people, housewives, etc.). In addition, factors such as the waiting time after calling a DRT, travel time after boarding the DRT, convenience of using the DRT app, punctuality of expected departure/arrival time, and location of pickup and drop-off points were the common factors that positively influenced the satisfaction of users of the DRT services during their commuting/school and shopping/leisure travel. Meanwhile, the method of transfer to other transport modes was found to affect satisfaction only in the case of commuting/school travel, but not in the case of shopping/leisure travel. To activate the DRT service, it is necessary to consider the five influencing factors analyzed above. In addition, the differentiating factors between commuting/school and shopping/leisure travel were also identified. In the case of commuting/school travel, people value time and consider it to be important, so it is necessary to promote the convenience of transfer to other transport modes to reduce the total travel time. Regarding shopping/leisure travel, it is necessary to consider ways to create a facility that allows users to easily and conveniently designate the location of the pickup and drop-off point.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.