• Title/Summary/Keyword: 대기과학

Search Result 1,621, Processing Time 0.024 seconds

Comparison of Ground-Based Particulate Matter Observations in the Seodaemun-gu District, Seoul (서울 서대문구 지상 미세먼지 관측 비교)

  • Koo, Ja-Ho;Lee, Seoyoung;Kim, Minseok;Park, Joonghee;Jeon, Soo Ahn;Noh, Hyunsuk;Kim, Jhoon;Lee, Yun Gon
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.469-477
    • /
    • 2018
  • We performed the comparison of observed $PM_{10}$ and $PM_{2.5}$ at both the Yonsei University and the AIRKOREA site in the same Seodaemun-gu district, Seoul from March to December 2016. Generally, the moderate correlations between two sites were found for both $PM_{10}$ and $PM_{2.5}$, but monthly difference was somewhat occurred, implying that the measurement situation is not equally maintained even in a closely located area. Particularly correlations became weaker in June and July, which seems the impact of rainy conditions. Correlations between two stations were higher for $PM_{10}$ compared to $PM_{2.5}$, probably indicating the spatially larger difference of fine mode particle. Monthly mean variation was similar between two sites showing a maximum in March and minimum in August. Diurnal variation was somewhat different: morning peak at Yonsei University but evening peak at the Seodaemun-gu AIRKOREA site, reflecting the difference of local air condition. We also compared the extent of $PM_{10}$ and $PM_{2.5}$ according to the local wind speed and direction. In general, the level of particulate matter was high when the wind is blowing from the northwestern area with low wind speed, meaning the high accumulation effect of transported air particles. Findings of this study can be usefully considered for the investigation about the discrepancy of aerosol measurement in a local scale.

The Observation of Ozone Vertical Profile in Yongin, Korea During the GMAP 2021 Field Campaign (GMAP 2021 캠페인 기간 용인지역 오존 연직 분포 관측)

  • Ryu, Hosun;Koo, Ja-Ho;Kim, Hyeong-Gyu;Lee, Nahyun;Lee, Won-Jin;Kim, Joowan
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.247-261
    • /
    • 2022
  • The importance of ozone monitoring has been growing due to the polar ozone depletion and increasing tropospheric ozone concentration over many Asian countries, including South Korea. In-situ measurement of the vertical ozone structure has advantages for ozone research, but observations are not sufficient. In this study, ozonesonde measurements were performed from October to November in Yongin during the GMAP (The GEMS Map of Air Pollution) 2021 campaign. The procedure for ozonesonde preparation and initial analysis of the observed ozone profile are documented. The observed ozone concentrations are in good agreement with previous studies in the troposphere, and they capture the stratospheric ozone distribution as well, including stratosphere-troposphere exchange event. These balloon-borne in situ measurements can contribute to the evaluation of remote sensing measurements such as Geostationary Environment Monitoring Spectrometer (GEMS). This document focuses on providing essential information of ozonesonde preparation and measurement for domestic researchers.

Retrieval and Accuracy Evaluation of Horizontal Winds from Doppler Lidars During ICE-POP 2018 (도플러 라이다를 이용한 ICE-POP 2018 기간 수평바람 연직 프로파일 산출 및 정확도 평가)

  • Kim, Kwonil;Lyu, Geunsu;Baek, SeungWoo;Shin, Kyuhee;Lee, GyuWon
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.163-178
    • /
    • 2022
  • This study aims to evaluate the accuracy of retrieved horizontal winds with different quality control methods from three Doppler lidars deployed over the complex terrain during the PyeongChang 2018 Olympic and Paralympic games. To retrieve the accurate wind profile, this study also proposes two quality control methods to distinguish between meteorological signals and noises in the Doppler velocity field, which can be broadly applied to different Doppler lidars. We evaluated the accuracy of retrieved winds with the wind measurements from the nearby or collocated rawinsondes. The retrieved wind speed and direction show a good agreement with rawinsonde with a correlation coefficient larger than 0.9. This study minimized the sampling error in the wind evaluation and estimation, and found that the accuracy of retrieved winds can reach ~0.6 m s-1 and 3° in the quasi-homogeneous wind condition. We expect that the retrieved horizontal winds can be used in the high-resolution analysis of the horizontal winds and provide an accurate wind profile for model evaluation or data assimilation purposes.

Monitoring and Long-term Trend of Total Column Ozone from Dobson Spectrophotometer in Seoul (1985~2017) (돕슨 분광광도계를 이용한 서울 상공의 오존층 감시 및 장기변화 경향(1985~2017))

  • Park, Sang Seo;Cho, Hi Ku;Koo, Ja-Ho;Lim, Hyunkwang;Lee, Hana;Kim, Jhoon;Lee, Yun Gon
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • Since 1985, the Dobson Spectrophotometer has been operated at Yonsei University, and this instrument has monitored the daily representative total ozone in Seoul. Climatological value for total ozone in Seoul is updated by using the daily representative observation data from 1985 to 2017. After updating the daily representative total ozone data, seasonal and inter-annual variation of total ozone in Seoul is also estimated after calculating inter-comparison between ground (Dobson Spectrophotometer) and satellite [Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI)] observations. The global average of total ozone measured by satellite is 297 DU, and its recent amount is about 3.5% lower than the global amount in 1980s. In Seoul, daily representative total ozone is ranged from 225 DU to 518 DU with longterm mean value of 324.3 DU. In addition, monthly mean total ozone is estimated from 290 DU (October) to 362 DU (March), and yearly average of total ozone have been continuously increased since 1985. For the long-term trend of total ozone in Seoul, this study is considered the seasonal variation, Solar Cycle, and Quasi-Biennial Oscillation. In addition to the natural oscillation effect, this study also considered to the long-term variation of sudden increase of total ozone due to the secondary ozone peak. By considering these natural effects, the long-term total ozone trends from 1985 to 2017 are estimated to be 1.11~1.46%/decade.

The Relationship of Particulate Matter and Visibility Under Different Meteorological Conditions in Seoul, South Korea (서울의 기상 조건에 따른 미세먼지와 시정의 상관성)

  • Kim, Minseok;Lee, Seoyoung;Cho, Yeseul;Koo, Ja-Ho;Yum, Seong Soo;Kim, Jhoon
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.391-404
    • /
    • 2020
  • To understand the characteristics of the relationship between visibility and particulate matter (PM) in different meteorological conditions, we investigated the contributions of PM and relative humidity (RH) to visibility in Seoul, South Korea. For the period from 2001 to 2018, both PM and RH show descending trends, resulting in a visibility increase. PM has little impact on the hourly variation of visibility, which could be explained more by the RH variability. Meanwhile, the daily change of PM accounts for daily visibility variation. For the monthly variation of visibility, both PM and RH showed similar influence. The correlation coefficients of PM10, PM2.5, and RH with visibility was -0.486, -0.644, and -0.556, respectively, which became higher during the high PM seasons of spring and winter. The correlation coefficient between PM2.5 and visibility was -0.454 for RH higher than 80%, and -0.780 for RH between 40% and 60%. From 2017 to 2018, there were 10 cases of extreme visibility impairment, among which five cases were incurred by high PM pollution, and two cases were by high humidity. Further analysis with PM chemical composition measurements is required to better understand the characteristics of visibility in Seoul.

대기오염과 그 방지책

  • Ju, In-Ho
    • The Science & Technology
    • /
    • v.1 no.3 s.3
    • /
    • pp.15-20
    • /
    • 1968
  • 1.대기오염의 역사 2.오염물질과 이의 영향 3.우리나라 대기오염문제 4.방지책

  • PDF