Browse > Article
http://dx.doi.org/10.14191/Atmos.2022.32.3.247

The Observation of Ozone Vertical Profile in Yongin, Korea During the GMAP 2021 Field Campaign  

Ryu, Hosun (Department of Atmospheric Science, Kongju National University)
Koo, Ja-Ho (Department of Atmospheric Sciences, Yonsei University)
Kim, Hyeong-Gyu (Department of Atmospheric Science, Kongju National University)
Lee, Nahyun (Department of Atmospheric Sciences, Yonsei University)
Lee, Won-Jin (Environmental Satellite Center, Climate and Air Quality Research Department, National Institute of Environmental Research (NIER))
Kim, Joowan (Department of Atmospheric Science, Kongju National University)
Publication Information
Atmosphere / v.32, no.3, 2022 , pp. 247-261 More about this Journal
Abstract
The importance of ozone monitoring has been growing due to the polar ozone depletion and increasing tropospheric ozone concentration over many Asian countries, including South Korea. In-situ measurement of the vertical ozone structure has advantages for ozone research, but observations are not sufficient. In this study, ozonesonde measurements were performed from October to November in Yongin during the GMAP (The GEMS Map of Air Pollution) 2021 campaign. The procedure for ozonesonde preparation and initial analysis of the observed ozone profile are documented. The observed ozone concentrations are in good agreement with previous studies in the troposphere, and they capture the stratospheric ozone distribution as well, including stratosphere-troposphere exchange event. These balloon-borne in situ measurements can contribute to the evaluation of remote sensing measurements such as Geostationary Environment Monitoring Spectrometer (GEMS). This document focuses on providing essential information of ozonesonde preparation and measurement for domestic researchers.
Keywords
Balloon-borne measurement; Ozonesonde; Ozone profile; Satellite validation; Yongin;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Chong, H., and Coauthors, 2018: Regional characteristics of NO2 column densities from pandora observations during the MAPS-Seoul campaign. Aerosol Air Qual. Res., 18, 2207-2219, doi:10.4209/aaqr.2017.09.0341.   DOI
2 Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 236, 187-193.
3 Flynn, L., and Coauthors, 2014: Performance of the ozone mapping and profiler suite (OMPS) products. J. Geophys. Res. Atmos., 119, 6181-6195, doi:10.1002/2013JD020467.   DOI
4 GCOS AOPC-XIII, 2007: GCOS-GAW Agreement Establishing the WMO/GAW Global Atmospheric Ozone Monitoring Networks as Global Baseline Networks of GCOS. WMO, 114, 1-2.
5 Tarasick, D. W., and Coauthors, 2019: Quantifying stratosphere-troposphere transport of ozone using balloonborne ozonesondes, radar windprofilers and trajectory models. Atmos. Environ., 198, 496-509, doi: 10.1016/j.atmosenv.2018.10.040.   DOI
6 Tarasick, D. W., and Coauthors, 2021: Improving ECC ozonesonde data quality: Assessment of current methods and outstanding issues. Earth Space Sci., 8, e2019EA000914, doi:10.1029/2019EA000914.   DOI
7 Kim, J.-H., H.-J. Lee, and H.-S. Lee, 2003: Analysis of Korea tropospheric ozone structures with Pohang ozonesonde data. Atmosphere, 13, 304-307 (in Korean with English abstract).
8 Thompson, A. M., R. M. Stauffer, K. Wargan, J. C. Witte, D. E. Kollonige, and J. R. Ziemke, 2021: Regional and seasonal trends in tropical ozone from SHADOZ profiles: Reference for models and satellite products. J. Geophys. Res. Atmos., 126, e2021JD034691, doi:10.1029/2021JD034691.   DOI
9 Yeo, M. J., and Y. P. Kim, 2021: Long-term trends of surface ozone in Korea. J. Clean. Prod., 294, 125352, doi:10.1016/j.jclepro.2020.125352.   DOI
10 Park, S.-S., J. Kim, H. K. Cho, H. Lee, Y. Lee, and K. Miyagawa, 2012: Sudden increase in the total ozone density due to secondary ozone peaks and its effect on total ozone trends over Korea. Atmos. Environ., 47, 226-235, doi:10.1016/j.atmosenv.2011.11.011.   DOI
11 Komhyr, W. D., 1969: Electrical concentration cells for gas analysis. Ann. Geophys., 25, 203-210.
12 Holton, J. R., P. H., Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403-439.   DOI
13 Hwang, S. H., J. Kim, and G. R. Cho, 2007: Observation of secondary ozone peaks near the tropopause over the Korean peninsula associated with stratosphere-troposphere exchange. J. Geophys. Res. Atmos., 112, D16305.   DOI
14 Thompson, A. M., and Coauthors, 2017: First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone profiles (1998-2016): 2. Comparisons with satellites and ground-based instruments. J. Geophys. Res. Atmos., 122, 13000-13025, doi:10.1002/2017JD027406.   DOI
15 Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157-184, doi:10.1002/2013RG000448.   DOI
16 Kim, J.-Y., Y. H. Youn, K. B. Song, and K. H. Kim, 2000: Characteristics of vertical ozone distributions in the Pohang Area, Korea. J. Korean Earth Sci. Soc., 21, 287-301 (in Korean with English abstract).
17 Choi, Y., and Coauthors, 2021: Temporal and spatial variations of aerosol optical properties over the Korean peninsula during KORUS-AQ. Atmos. Environ., 254, 118301, doi:10.1016/j.atmosenv.2021.118301.   DOI
18 Park, S., S. W. Son, M. I. Jung, J. Park, and S. S. Park, 2020: Evaluation of tropospheric ozone reanalyses with independent ozonesonde observations in East Asia. Geosci. Lett., 7, 1-12, doi:10.1186/s40562-020-00161-9.   DOI
19 Park, S.-S., J. Kim, N. Cho, Y. G. Lee, and H. K. Cho, 2011: The variations of stratospheric ozone over the Korean Peninsula 1985-2009. Atmosphere, 21, 349- 359, doi:10.14191/Atmos.2011.21.4.349 (in Korean with English abstract).   DOI
20 Park, J.-K., S.-Y. Kim, and S.-W. Son, 2019: Evaluation of the troposphere ozone in the reanalysis datasets: comparison with pohang ozonesonde observation. Atmosphere, 29, 53-59, doi:10.14191/Atmos.2019.29.1.053 (in Korean with English abstract).   DOI
21 Park, S.-S., H. K. Cho, J. H. Koo, H. Lim, H. Lee, J. Kim, and Y. G. Lee, 2019: Monitoring and Long-term trend of total column ozone from dobson spectrophotometer in Seoul (1985-2017). Atmosphere, 29, 13-20, doi:10.14191/Atmos.2019.29.1.013 (in Korean with English abstract).   DOI
22 Levelt, P. F., E. Hilsenrath, G. W. Leppelmeier, G. H. J. van den Oord, P. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, 2006: Science objectives of the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens., 44, 1199-1208.   DOI
23 Newman, P. A., and Coauthors, 2002: An overview of the SOLVE/THESEO 2000 campaign. J. Geophys. Res. Atmos., 107, SOL-1.
24 Mills, G., and Coauthors, 2018: Tropospheric ozone assessment report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elem. Sci. Anth., 6, 47, doi:10.1525/elementa.302.   DOI
25 Ryu, H., and J. Kim, 2020: Analysis of the ozone transport and seasonal variability in the tropical tropopause layer using MERRA-2 reanalysis data. Atmosphere, 30, 91-102, doi:10.14191/Atmos.2020.30.1.091 (in Korean with English abstract).   DOI
26 Shin, D., S. Song, S. B. Ryoo, and S. S. Lee, 2020: Variations in ozone concentration over the mid-latitude region revealed by ozonesonde observations in Pohang, South Korea. Atmosphere, 11, 746, doi:10.3390/atmos11070746.   DOI
27 Smit, H. G. J., and Panel for the Assessment of Standard Operating Procedures for Ozonesondes, 2014: Quality assurance and quality control for ozonesonde measurements in GAW, World Meteorological Organization, GAW Report# 201 [Available online at https://library.wmo.int/doc_num.php?explnum_id=7167].
28 Stauffer, R. M., A. M. Thompson, and J. C. Witte, 2018: Characterizing global ozonesonde profile variability from surface to the UT/LS with a clustering technique and MERRA-2 reanalysis. J. Geophys. Res. Atmos., 123, 6213-6229, doi:10.1029/2018jd028465.   DOI
29 Stolarski, R. S., D. W. Waugh, L. Wang, L. D. Oman, A. R. Douglass, and P. A. Newman, 2014: Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics. J. Geophys. Res. Atmos., 119, 6196-6206, doi:10.1002/2013JD021294.   DOI
30 Sullivan, J. T., and Coauthors, 2019: Taehwa research forest: a receptor site for severe domestic pollution events in Korea during 2016. Atmos. Chem. Phys., 19, 5051-5067, doi:10.5194/acp-19-5051-2019.   DOI
31 Zhang, Y., and Y. Wang, 2016: Climate-driven ground-level ozone extreme in the fall over the Southeast United States. Proc. Natl. Acad. Sci., 113, 10025-10030, doi:10.1073/pnas.1602563113.   DOI
32 Wang, P., Y. Chen, J. Hu, H. Zhang, and Q. Ying, 2018: Attribution of tropospheric ozone to NO x and VOC emissions: considering ozone formation in the transition regime. Environ. Sci. Technol., 53, 1404-1412, doi:10.1021/acs.est.8b05981.   DOI
33 WMO, 2008: Observing Systems. Part II, Guide to Meteorological Instruments and Methods of Observations, World Meteorological Organization, WMO-No. 8, 681 pp.
34 Yoo, J. M., M. J. Jeong, D. Kim, W. R. Stockwell, J. H. Yang, H. W. Shin, M. I. Lee, C. K. Song, and S. D. Lee, 2015: Spatiotemporal variations of air pollutants (O 3, NO 2, SO 2, CO, PM 10, and VOCs) with landuse types. Atmos. Chem. Phys., 15, 10857-10885, doi:10.5194/acp-15-10857-2015.   DOI
35 Bak, J., K. H. Baek, J. H. Kim, X. Liu, J. Kim, and K. Chance, 2019: Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation. Atmos. Meas. Tech., 12, 5201-5215, doi:10.5194/amt-12-5201-2019.   DOI
36 Boxe, C. S., and Coauthors, 2010: Validation of northern latitude tropospheric emission spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis. Atmos. Chem. Phys., 10, 9901-9914, doi:10.5194/acp-10-9901-2010.   DOI
37 Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351-363.   DOI
38 Brewer, A. W., and J. R. Milford, 1960: The oxford-kew ozone sonde. Proc. Roy. Soc. London. Series A. Mathematical and Physical Sciences, 256, 470-495.
39 Crawford, J. H., and Coauthors, 2021: The Korea-United States Air Quality (KORUS-AQ) field study. Elem Sci. Anth., 9, 00163, doi:10.1525/elementa.2020.00163.   DOI
40 Chipperfield, M., S. S. Dhomse, W. Feng, R. L. McKenzie, G. J. M. Velders, and J. A. Pyle, 2015: Quantifying the ozone and ultraviolet benefits already achieved by the montreal protocol. Nat. Commun., 6, 7233, doi:10.1038/ncomms8233.   DOI
41 Choi, W.-K., and H.-S. Kim, 2010: Annual variation and trends of the arctic tropopause pressure. Atmosphere, 20, 355-366 (in Korean with English abstract).
42 EN-SCI Corporation, 1996: Instruction Manual - Model 1Z ECC-O3 Sondes, Boulder, Colorado, 26.
43 Hofmann, D. J., B. J. Johnson, and S. J. Oltmans, 2009: Twenty-two years of ozonesonde measurements at the South Pole. Int. J. Remote Sens., 30, 3995-4008.   DOI
44 Kim, J.-H., and Coauthors, 2001: Study on the characteristics of tropospheric ozone in the Korea peninsula using Pohang ozonesonde data. Atmosphere, 11, 98-102 (in Korean with English abstract).
45 Kobayashi, J., and Y. Toyama, 1966: On various methods of measuring the vertical distribution of atmospheric ozone (III). Papers in Meteorology and Geophysics, 17, 113-125.   DOI
46 Livesey, N. J., and Coauthors, 2015: EOS MLS Version 4.2 x Level 2 data quality and description document. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 15 [Available online at http://mls.jpl.nasa.gov/].
47 Stohl, A., and Coauthors, 2003: Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO. J. Geophys. Res. Atmos., 108, 8516, doi:10.1029/2002JD002490.   DOI
48 Oh, J., S. W. Son, K. Williams, D. Walters, J. Kim, M. Willett, and J. Kim, 2018: Ozone sensitivity of tropical upper-troposphere and stratosphere temperature in the MetOffice Unified Model. Quart. J. Roy. Meteor. Soc., 144, 2001-2009.   DOI
49 Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nature Geoscience, 6, 169-176, doi:10.1038/ngeo1733.   DOI
50 Smit, H. G. J., and Coauthors, 2007: Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE), J. Geophys. Res. Atmos., 112, D19306.   DOI