• Title/Summary/Keyword: 달 착륙 지역

Search Result 11, Processing Time 0.018 seconds

A Review of the Candidate Areas and Missions for Lunar Landing Sites based on NASA Workshop & Overseas Landing Missions (NASA 워크숍 및 해외 착륙임무에 기반한 달 착륙 후보 지역과 임무에 대한 고찰)

  • Lee, Joohee;Rew, Dong-Young
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.375-395
    • /
    • 2021
  • Korea plans to send a pathfinder lunar orbiter to the Moon for the first time in August 2022. And according to the 3rd Basic Plan for Space Development Promotion, the plan is to send a lunar lander to the Moon before 2030. The selection of the lunar landing area can be varied depending on the lunar lander's mission, therefore preliminary research on the lunar landing sites is essential for a successful lunar exploration mission design. This paper analyzed the characteristics of major regions among 14 proposed regions using NASA's MoonTrek based on the data on the candidate areas for the major moon landing proposed sites by the NASA workshop in 2018. And we looked into what kind of future moon landing missions are suitable for these areas. We also looked at the importance of lunar Antarctica area through the recent lunar landing areas of Moon landing countries and Artemis plan.

Development of KAU Mechanical Lunar Simulants and Drop Test of Lunar Landing Gears (KAU 기계적 달 복제토 개발 및 달착륙선 착륙장치의 낙하시험)

  • Yoo, Seok-Ho;Kim, Hyun-Duk;Lim, Jae Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1037-1044
    • /
    • 2014
  • In this study, we designed a drop test system considering lunar surface environment and tested landing gear of experimental lunar lander. The lunar lander would be landed at soil place for soft landing. When the lunar lander touches down, the acceleration of the lander is largely affected by mechanical characteristics of the lunar soil. Accordingly, a drop test using lunar soil is needed to verify the performance of the lunar landing gear. Because the lunar soil is not available generally, we developed a lunar simulant KAUMLS(Korea Aerospace University Mechanical Luna Simulant) based on mechanical properties of the lunar soil of NASA's LUNA PROJECT. In addition, drop tests on steel plate and dry sand are performed to evaluate impact characteristics by the surface environment.

Heat Flux Analysis of Lunar Lander for Potential Landing Candidate Area (달 착륙선의 착륙 후보지별 열 유입량 분석)

  • Park, Tae-Yong;Chae, Bong-Geon;Lee, Jang-Joon;Kim, Jung-Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.324-331
    • /
    • 2018
  • The thermal environment on lunar surface is more severe than that of earth's surface or low earth orbit because of the long daytime and nighttime due to 28 days of rotation cycle of moon. Thus, analyzing heat flux on lunar lander at potential landing sites is important to determine the landing site in its initial design phase. In this study, thermal model of lunar regolith that can simulate lunar surface temperature was constructed for analyzing thermal characteristics according to the potential landing sites of lunar lander. The heat flux analyses were performed various latitudes of equator, mid-latitude, polar regions, lunar mare and highland. In addition, we also investigated the heat flux of lunar lander when it is landed on adjacent area to hill.

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander (달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석)

  • Lee, Choong-Min;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.

Implementation of theVerification and Analysis System for the High-Resolution Stereo Camera (고해상도 다기능 스테레오 카메라 지상 검증 및 분석 시스템 구현)

  • Shin, Sang-Youn;Ko, Hyoungho
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.471-482
    • /
    • 2019
  • The mission of the high-resolution camera for the lunar exploration is to provide 3D topographic information. It enables us to find the appropriate landing site or to control accurate landing by the short distance stereo image in real-time. In this paper, the ground verification and analysis system using the multi-application stereo camera to develop the high-resolution camera for the lunar exploration are proposed. The mission test items and test plans for the mission requirement are provided and the test results are analyzed by the ground verification and analysis system. For the realistic simulation for the lunar orbiter, the target area that has similar characteristics with the real lunar surface is chosen and the aircraft flight is planned to take image of the area. The DEM is extracted from the stereo image and compose three dimensional results. The high-resolution camera mission requirements for the lunar exploration are verified and the ground data analysis system is developed.

Polarimetry of the Moon through the eyes of PolCam: Phase-angle coverage

  • Sim, Chae Kyung;Kim, Sungsoo S.;Jeong, Minsup;Choi, Young-Jun;Hong, Sukbum A.;Baek, Kilho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.55.2-55.2
    • /
    • 2019
  • 한국형 시험용 달 궤도선(KPLO)에 실릴 과학 탑재체 가운데 하나인 광시야 편광 카메라(PolCam)는 최초로 달 표면전체의 편광 특성을 관측한다. 편광 특성은 태양-달-관측기기 사이의 각도인 위상각에 따라 달라지므로, 다양한 위상각에서의 반복 관측을 통해 달 전 지역에 대한 각각의 편광곡선을 얻을 예정이다. 편광곡선으로부터 달 표면의 입자 크기와 성분 등의 분포를 알 수 있다. 이는 과학적으로도 흥미로울 뿐 아니라, 미래의 달 탐사 임무를 위한 착륙지 선정 시에도 중요한 참고자료가 된다. 여기에서는, PolCam이 1년간의 KPLO 임무 동안 관측할 수 있는 지역 및 위상각의 분포를 소개한다. 또한, 임무 도중 관측이 일시중지되거나 임무 자체가 비정상종료되는 경우 불완전한 관측 자료로부터 편광곡선을 구하는 방법에 대해 알아본다.

  • PDF

A Study on Rima Hadley Region of the Moon Using Moon Mineralogy Mapper(M3) Spectra (M3 스펙트럼 데이터를 이용한 달 Rima Hadley 지역 연구)

  • Oh, Youngseok;Jin, Ho;Kim, Khan-Hyuk;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.51.1-51.1
    • /
    • 2015
  • 달의 지형 중 계곡과 같아 보이는 곳을 Rima 또는 Rille 지형이라고 부르며 국제천문연맹(IAU : nternational Astronomical Union)과 미국지질조사국(USGS : United States Geological Survey)에서 관리하는 행성 지명 사전(Gazetteer of Planetary Nomenclature)에 명명된 달의 Rima 지역은 111개에 이른다. 그 중 Rima Hadley 지역은 아폴로 15호가 착륙한 지점으로 잘 알려져 있다. 본 연구에서는 2008년에 발사된 Chandrayaan-1 위성의 적외선 초분광 영상 탑재체인 Moon Mineralogy Mapper(M3) 데이터를 통해 Rima Hadley 지역의 분광학적 특성을 살펴보았다. M3 데이터는 감람석(olivine)이 풍부한 지역에서는 1 um 를 중심으로 흡수선이 나타남을 보이며, (Peter J. Isaacson et al., 2011) 2.8 um 중심의 흡수선을 통해 달의 OH(hydroxyl) 분포에 대해 설명한다. (Carle M. Piters et al., 2009, Georgiana Y. Kramer et al., 2011) 본 연구에서는 Rima Hadley 지역이 1 um 파장 근처에서 강한 흡수선을 가지는 것을 볼 수 있었고, 감람석이 풍부한 지역임을 확인할 수 있었다. 이처럼 감람석이 풍부한 곳은 현무암 지역으로 과거 용암이 분출되어진 곳으로 추측 해 볼 수 있다. 본 연구를 발전시킨다면 Rima Hadley 지역의 생성과 다른 Rima 지형의 형성 과정에 대해 더욱 많은 정보를 얻을 수 있을 것으로 기대된다.

  • PDF

Geographic Distribution Analysis of Lunar In-situ Resource and Topography to Construct Lunar Base (달 기지 건설을 위한 달 현지 자원 및 지형의 공간 분포 분석)

  • Hong, Sungchul;Kim, Young-Jae;Seo, Myungbae;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.669-676
    • /
    • 2018
  • As the Moon's scientific, technological, and economic value has increased, major space agencies around the world are leading lunar exploration projects by establishing a road map to develop lunar resources and to construct a lunar base. In addition, as the lunar base construction requires huge amounts of resources from the Earth, lunar in-situ construction technology is being developed to produce construction materials from local lunar resources. On the other hand, the characteristics of lunar topography and resources vary spatially due to the crustal and volcanic activities inside the Moon as well as the solar wind and meteorites from outside the Moon. Therefore, in this paper, the geospatial analysis of lunar resource distribution was conducted to suggest regional consideration factors to apply the lunar in situ construction technologies. In addition, the lunar topographic condition to select construction sites was suggested to ensure the safe landing of a lunar lander and the easy maneuvering of a rover. The lunar topographic and resource information mainly from lunar orbiters were limited to the lunar surface with a low spatial resolution. Rover-based lunar exploration in the near future is expected to provide valuable information to develop lunar in situ construction technology and select candidate sites for lunar base construction.

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Assessment of DTVC Operation Efficiency for the Simulation of High Vacuum and Cryogenic Lunar Surface Environment (고진공 및 극저온 달의 지상 환경 재현을 위한 지반열진공챔버 운영 효율성 평가)

  • Jin, Hyunwoo;Chung, Taeil;Lee, Jangguen;Shin, Hyu-Soung;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.125-134
    • /
    • 2022
  • The Global Expansion Roadmap published by the International Space Exploration Coordination Group, which is organized by space agencies around the world, presents future lunar exploration guidance and stresses a lunar habitat program to utilize lunar resources. The Moon attracts attention as an outpost for deep space exploration. Simulating lunar surface environments is required to evaluate the performances of various equipment for future lunar surface missions. In this paper, an experimental study was conducted to simulate high vacuum pressure and cryogenic temperature of the permanent shadow regions in the lunar south pole, which is a promising candidate for landing and outpost construction. The establishment of an efficient dirty thermal vacuum chamber (DTVC) operation process has never been presented. One-dimensional ground cooling tests were conducted with various vacuum pressures with the Korean Lunar Simulant type-1 (KLS-1) in DTVC. The most advantageous vacuum pressure was found to be 30-80 mbar, considering the cooling efficiency and equipment stability. However, peripheral cooling is also required to simulate a cryogenic for not sublimating ice in a high vacuum pressure. In this study, an efficient peripheral cooling operation process was proposed by applying the frost ratio concept.