Journal of the Korean Society for Aeronautical & Space Sciences
/
v.47
no.1
/
pp.26-34
/
2019
In this paper, a coarse lunar soil model is developed using discrete element method and its computed physical properties are compared with those of the actual lunar soil for its validation. The surface of the actual moon consists of numerous craters and rocks of various sizes, and it is covered with fine dry soil which seriously affects the landing stability of the lunar lander. Therefore, in consideration of the environment of the lunar regolith, the lunar soil is realized using discrete element method. To validate the coarse model of lunar soil, the simulations of the indentation test and the direct shear test are performed to check the physical properties(indentation depth, cohesion stress, internal friction angle). To examine the performance of the proposed model, the drop simulation of finite element model of single-leg landing gear is performed on proposed soil models with different particle diameters. The impact load delivered to the strut of the lander is compared to test results.
Korea Pathfinder Lunar Orbiter (KPLO), launched in August 2022, is successfully carrying out its mission. Korea's lunar lander and rover programs are expected to proceed in the future. To successfully carry out the mission after the lunar lander has landed on the surface, the performance of the equipment to be mounted should be checked in a laboratory environment similar to the Moon. Scientists and engineers of several countries, including the United States and China, use lunar soil simulant which is developed to resemble lunar soil for simulating the surface of the lunar landing site. Several lunar probe landing sites are being discussed in Korea, and lunar soil simulants such as Korea Hanyang Lunar Simulant-1 (KOHLS-1), Korea Aerospace University Mechanical Lunar Simulants (KAUMLS), and Korea Lunar Simulant-1 (KLS-1), which are similar to the characteristics of lunar mare soil, have been developed. However, those simulants are not useful if the landing site is chosen as a highland area. In this study, we introduce the process of developing KIGAM-L1, a lunar highland soil simulant similar to the chemical composition of the Apollo 16 lunar soil sample and the particle size distribution of lunar soil sample 60500-1, in case the lunar lander lands at highland area.
미국, 중국, 일본, 인도 등과 같은 세계 여러 국가들이 달 및 화성 탐사를 수행하고 있는 현시점에서 우리나라도 2025년에 달 탐사를 계획하고 있다. 인간에게 있어서 우주공간은 고에너지 환경의 영향을 많이 받는 곳이다. 향후 달, 화성과 같은 다른 행성으로의 이주를 생각하고 있는 현 시점에서 우리는 고에너지우주방사선 환경의 영향을 고려해야 한다. 지구에서의 인간은 지구 자기장과 대기에 의해 고에너지 우주선 환경으로부터의 영향을 덜 받는다. 그러나 달과 화성의 경우는 다르다. 달의 대기는 거의 없고 자기장도 무시할 정도로 매우 작으며, 화성 또한 자기장이 거의 없으며 대기 또한 얇아서 Galactic Cosmic Ray (GCR)나 Solar Energetic Proton (SEP) 등으로부터 인간은 많은 영향을 받을 수 있다. 이러한 위험으로부터 인간이 보호받을 수 있는 곳은 달과 화성의 지표 아래나 동굴이라고 볼 수 있다. 그래서 달 및 화성의 표면과 지하 영역에 대한 고에너지 우주선 환경의 깊이에 따른 영향을 분석하여 어느 정도로 두터운 천장을 가진 동굴이어야 우주인들이 상주하는 지하공간을 지구표면에서의 방사선 환경과 같은 수준으로 유지할 수 있는지를 추정해 보려고 한다. 달 표면 토양의 화학적 구성성분은 Maria와 Highlands로 구분되어 약간의 차이가 있다. 달의 Maria 토양은 $SiO_2$ - 45.4%, $Al_2O_3$ - 14.9%, CaO - 11.8%, FeO - 14.1%, MgO - 9.2%, $TiO_2$ - 3.9%, $Na_2O$ - 0.6%이고 Highlands의 토양은 $SiO_2$ - 45.5%, $Al_2O_3$ - 24.0%, CaO - 15.9%, FeO - 5.9%, MgO - 7.5%, $TiO_2$ - 0.6%, $Na_2O$ - 0.6%의 화학적인 구성비를 가진다. 또한 화성표면은 $SiO_2$ - 43.9%, $Al_2O_3$ - 8.1%, CaO - 6.0%, FeO - 18.1%, MgO - 7.1%, $Na_2O$ - 1.4%의 토양의 화학적인 구성비를 가지고 있다. 본 연구에서는 이러한 구성비를 가지고 있는 달과 화성 표면에 대한 우주방사선의 영향을 분석하기 위해서 GEANT4를 사용하여 수행한 전산 모사의 결과를 발표할 것이다.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.42
no.12
/
pp.1037-1044
/
2014
In this study, we designed a drop test system considering lunar surface environment and tested landing gear of experimental lunar lander. The lunar lander would be landed at soil place for soft landing. When the lunar lander touches down, the acceleration of the lander is largely affected by mechanical characteristics of the lunar soil. Accordingly, a drop test using lunar soil is needed to verify the performance of the lunar landing gear. Because the lunar soil is not available generally, we developed a lunar simulant KAUMLS(Korea Aerospace University Mechanical Luna Simulant) based on mechanical properties of the lunar soil of NASA's LUNA PROJECT. In addition, drop tests on steel plate and dry sand are performed to evaluate impact characteristics by the surface environment.
Yang, Soon Shin;Kang, Yeon Chul;Son, Jae Yeon;Oh, Min Hwan;Kim, Jeong Ho;Cho, Jin Yeon
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.42
no.4
/
pp.284-290
/
2014
To successfully explore the moon by lunar lander, it is essential to guarantee the safe landing of lunar lander. Therefore, efficient shock absorption system of lunar lander should be designed in order to reduce landing impact force. Also, for more practical design of lunar lander, it is important to consider the effect of lunar regolith. In the line of thought, finite element model of lunar lander considering the effect of lunar regolith is developed. To reduce landing impact force, optimization of shock absorption system for lunar lander has been carried out. In optimization, sequential approximate optimization method based on meta-model is used. Through the result of optimization, it is verified that landing impact force on lunar lander can be efficiently reduced by the present optimization procedure.
KSCE Journal of Civil and Environmental Engineering Research
/
v.39
no.2
/
pp.327-333
/
2019
For sustainable lunar exploration, the most required resources should be procured on site because it takes tremendous cost to transfer the resources from the Earth to the Moon. The technologies required for use of lunar resources refers to In-Situ Resource Utilization (ISRU). As the ISRU technology cannot be verified in the Earth, a lunar surface environment simulator is necessary to be prepared in advance. The Moon has no atmosphere, and the average temperature of the lunar surface reaches to $107^{\circ}C$ during the daytime and $-153^{\circ}C$ at night. The lunar surface is also covered with very fine soils with sharp particles that are electrostatically charged by solar radiation and solar wind. In this research, generation of vacuum environment with lunar soil mass in a chamber and simulation of electrostatically charged soils are taken into consideration. It was successful to make a vacuum environment of a chamber including lunar soils without soil disturbance by controlling evacuation rate of a vacuum chamber. And an experiment procedure for simulating the charged lunar soil was suggested by theoretical consideration in charging phenomena on lunar dust.
Various ecosystem carry out fundamental function of material circulation and energy flow through interrelationship with many environmental factors. Therefore, it is crucial to scientifically understand the value of nature to deduce correlation between environmental factor and change of ecosystem function. In this study, we determined the accumulated ecosystem carbon and characteristics of soil respiration on grassland vegetation in Namahangang basin in Namhangang Basin. It was found that the rate of soil respiration was highly correlated with the soil temperature in all communities. The measured soil respiration rates were $1,539mgCO_2\;m^{-2}h^{-1}$, $1,200mgCO_2\;m^{-2}h^{-1}$, $1,215mgCO_2\;m^{-2}h^{-1}$ in Miscanthus sacchariflorus, Phragmites japonica, Salix koreensis communities, respectively. Also, carbon quantities accumulated in litter and soil layers were $40.6tCha^{-1}$ (1.9+38.7), $46.9tCha^{-1}$ (43.0+3.9), $31.2tCha^{-1}$ (28.9+2.3) in M. sacchariflorus, P. japonica, S. koreensis communities, respectively.
The operating temperature range of the natural gas pipeline in Arctic environment would be controlled primarily to optimize gas throughput and to minimize the environmental impact resulting from operation of such pipelines. The temperature of the gas as it flows through the pipeline is a function of both the Joule-Thomson effect and the pipe to soil heat transfer. Therefore, the heat transfer and Joule-Thomson effect of the buried natural gas pipeline in this study were carefully considered. Soil temperatures and overall heat transfer coefficients were assumed to be $0{\sim}-20^{\circ}C$ and $0{\sim}5.5W/m^2K$, respectively. The gas temperature and pressure calculations along a pipeline were performed simultaneously at different soil temperatures and overall heat transfer coefficients. Also, this study predicted the phase change and hydrate formation for different soil temperatures and overall heat transfer coefficients using HYSYS simulation package.
달의 양방향 분포 함수는 Hapke에 의하여 처음 이론적 모델이 만들어졌고, 이후 Foote에 의해 아폴로 11호의 달 토양 샘플 10084의 양방향 분포 함수가 측정된 바 있다. 이 연구에서는 실제 크기의 달의 표면에 Hapke의 양방향 분포 함수를 적용하여 광학 모델은 개발하였다. 달 표면의 산란특성 중 반 무한하고 매끄러운 지면에 적용되는 후방산란 효과와 산란각에 따른 위상 함수가 적용된 모델이 사용되었으며, 위상함수로는 Henyey-Greenstein 함수가 사용되었다. 달의 3D 모델에 사용된 매개 변수는 Foote가 측정한 Hapke의 변수를 따랐으며 달의 단일 산란 알베도는 w=0.33, 핫스팟의 넓이는 h=0.017, Legendre 다항 계수인 b와 c에는 각각 b=0.308, c=0.425의 값이 사용되었다. 구성된 달의 양방향 분포 함수를 이용한 통합적 광선 추적 수치 모사 결과, 달 반사광의 복사 휘도율은 1차 근사 해석적 방법을 이용한 계산 결과의 복사 휘도율과 측정 오차 범위 이내의 오차를 보였다.
온실에서 퇴비화 발효율을 이용하기 위하여 발효율이 토양을 직접 가온하면서 퇴비화하는 퇴비화 하우스를 제작하였다. 퇴비화가 진행되는 동안 각 단계별 열의 발생량과 발생열량이 토양에 전달되는 특성을 분석하였다. 우분과 왕겨를 혼합하여 퇴비화 처리하였다. 퇴비화 과정의 총 70일 동안 391MJ/㎥의 열량이 발생하였으며, 이중 22일의 주발효기간 동안에 약 82%의 열량이 발생하였다. 또한 총 열량중 토양의 지표면의 지표면을 통하여 방출되는 열량을 제외한 260M/㎥의 열량이 지중가온에 이용된 것으로 나타났다. 콤포스트의 열 전도계수는 1.7~0.3W/m$^{\circ}$K이었다. 퇴비화 시스템을 구비한 온실의 주 발효기간의 지중 평균온도는 27.9$^{\circ}C$인 반면, 퇴비화 시스템이 없는 온실의 경우 13.9$^{\circ}C$로 나타나 퇴비화 시스템이 지중 온도증가에 큰 효과를 나타내고 있었다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.