DOI QR코드

DOI QR Code

Development of a Coarse Lunar Soil Model Using Discrete Element Method

이산요소법을 이용한 성긴 달토양 수치해석모델 개발

  • Received : 2018.08.06
  • Accepted : 2018.12.03
  • Published : 2019.01.01

Abstract

In this paper, a coarse lunar soil model is developed using discrete element method and its computed physical properties are compared with those of the actual lunar soil for its validation. The surface of the actual moon consists of numerous craters and rocks of various sizes, and it is covered with fine dry soil which seriously affects the landing stability of the lunar lander. Therefore, in consideration of the environment of the lunar regolith, the lunar soil is realized using discrete element method. To validate the coarse model of lunar soil, the simulations of the indentation test and the direct shear test are performed to check the physical properties(indentation depth, cohesion stress, internal friction angle). To examine the performance of the proposed model, the drop simulation of finite element model of single-leg landing gear is performed on proposed soil models with different particle diameters. The impact load delivered to the strut of the lander is compared to test results.

본 논문에서는 이산요소법을 이용하여 성긴 달토양 수치해석모델을 생성하고 그 정확도를 실제 달토양의 물리적 특성과 비교 및 검증한다. 실제 달의 표면은 다수의 분화구와 바위로 구성되어 있고 매우 미세한 건조토양으로 덮여있으므로 달토양 특성은 달착륙선의 착륙안정성을 결정짓는 중요한 인자이다. 따라서 달토양특성을 고려하기 위해 이산요소법을 이용하여 달토양의 수치해석모델을 생성하고 검증한다. 달토양 압입시험 및 직접전단시험을 해석적으로 구현하여 해석용 달토양이 실제 달토양과 유사한 물리적 특성(압입깊이, 점착력, 내부마찰각 등)을 갖는 것을 확인한다. 이렇게 생성한 달토양 모델 위에 single-leg 착륙장치 유한요소모델을 낙하시키는 해석을 통해 착륙장치 스트럿에 가해지는 충격하중을 예측하고 시험결과와 비교하여 제안된 방법의 적절성을 검토한다.

Keywords

References

  1. Jeong, H. J., Lim, J. H., and Kim, J. W., "Evaluation of Landing Stability of Lunar Lander Considering Various Landing Conditions," Journal of The Korean Society of Aeronautical and Space Sciences, Vol. 46, No. 2, 2018, pp.124-132. https://doi.org/10.5139/JKSAS.2018.46.2.124
  2. Sahinoz, A., "Landing Gear Design and Stability Evaluation of a Lunar Lander for Soft Landing," Proceedings of the Bennett Conference on Mechanical Engineering, April 2012, pp.1-17.
  3. Pham, V. L., Zhao, J., Goo, N. S., Lim, J. H., Hwang, D. S., and Park, J. S., "Landing Stability Simulation of a 1/6 Lunar Module with Aluminum Honeycomb Dampers," International Journal of Aeronautical and Space Sciences, Vol. 14, No. 4, 2013, pp.356-368. https://doi.org/10.5139/IJASS.2013.14.4.356
  4. Huang, B., Jiang, Z., Lin, P., and Ling, D., "Research on Impact Process of Lander Footpad against Simulant Lunar Soils," Hindawi Publishing Corporation Shock and Vibration, Vol. 2015, pp.1-24.
  5. Nakashima, H., Fujii, H., Oida A., Momozu, M., Kanamori, H., Aoki, S., Yokoyama, T., Shimizu, H., Miyasaka, J., and Ohdoi, K., "Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain," Journal of Terramechanics, Vol. 47, No. 5, 2010, pp.307-321. https://doi.org/10.1016/j.jterra.2010.04.001
  6. Abaqus Analysis User's Manual (6.14), Dassault Systemes, 2014.
  7. Heiken, G. H., Vaniman, D. T., and French, B. M., "Lunar Source Book, a User's Guide to the Moon," CAMBRIDGE UNIVERSITY PRESS, 1991.
  8. Yang, M. S., Jun, C. W., and Sohn, J. H., "Comparisons of Free Flowing Simulation of the Sand by Using DEM with the Experiment," Proceedings of the Korean Society of Mechanical Engineers, December 2016, pp.2674-2676.
  9. Park, S. H., Choi, D. K., and Sohn, D. W., "A study on fluid flow characteristic depending on the size distribution and volume fraction of particulate solid materials using discrete element modeling of packed beds," Proceeding of the Korean Society of Mechanical Engineers, 2016, pp.1269-1272.
  10. Imre, B., Rabsamen, S., and Springman, S. M., "A coefficient of restitution of rock materials," Computers & Ceosciences, Vol. 34, 2008, pp.339-350. https://doi.org/10.1016/j.cageo.2007.04.004
  11. O'Sullivan, C., and Bray, J. D., "Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme," Engineering Computations, Vol. 21, 2013, pp.278-303. https://doi.org/10.1108/02644400410519794
  12. Mitchell, J. K., Houston, W. N. Scott, R. F., Costes, N. C., Carrier, W. D., and Bromwell, L. G., "Mechanical Properties of Lunar Soil," Proceedings of the Third Lunar Science Conference, Vol. 3, 1978, pp.3235-3253.
  13. Liu, T., Wei, C., Liang, L, Zhang, and J., Zhao, Y., "Simulation and Analysis of the Lunar Regolith Sampling Process Based on the Discrete Element Method," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 57, No. 6, 2014, pp.309-316. https://doi.org/10.2322/tjsass.57.309
  14. Man, L., Hailong, W., Dongbo, T., Jingyu, T., Zhen, L., and Yu, L., "Discrete Element Simulation of Lunar Dust Suspension Caused by Lunar Rover Wheel," International Conference on Transportation, Mechanical, and Electrical Engineering, December 2011, pp.316-319.
  15. Sperling, F. B., "Basic and Mechanical Properties of the Lunar Soil Estimated From Surveyor Touchdown Data," JPL Technical Memorandum 33-443, March 1970.
  16. Bui, H., Kobayashi, T., Fukagawa, R., and Wells, J. C., "Numerical and experimental studies of gravity effect on the mechanism of lunar excavations," Journal of Terramechanics, Vol. 46, 2009, pp.115-124. https://doi.org/10.1016/j.jterra.2009.02.006
  17. Modenese, C., Utili, S., and Houlsby, G. T., "DEM Modelling of Elastic Adhesive Particles with Application to Lunar Soil," Earth and space, 2012, pp.45-54.
  18. Koh, S. W., Chang, B. C., Koo, J. K., and Lee, T. S., "Study for Korean Lunar Simulant Prototype Development," Korea Society of Civil Engineers Convention, 2009, pp.3598-3601.
  19. https://www.astm.org/
  20. Yang, S. S., Kang, Y. C., Son, J. Y., Oh, M. H., Kim, J. H., and Cho, J. Y., "Optimization of shock absorption system for lunar lander considering the effect of lunar regolith," Journal of The Korean Society of Aeronautical and Space Sciences, Vol. 42, No. 4, 2012, pp.284-290. https://doi.org/10.5139/JKSAS.2014.42.4.284
  21. Witthoeft, A. F., and Kim, H., "Numerical investigation of earth pressure reduction on buried pipes using EPS geofoam compressible inclusions," Geosynthetics International, February 2016.
  22. http://structx.com/Soil_Properties_003.html
  23. Rogers, W. F., "Apollo Experience Report-Lunar Module Landing Gear Subsystem," NASA TN D-6850, Manned Spacecraft Center, June 1972.
  24. Oh, M. H., Cho, Y. M., Lee, H. J., Cho, J. Y., Kim, S. W., and Hwang, D. S., "Sequential Approximate Optimization of Shock Absorption System for Lunar Lander by using Quadratic Polynomial Regression Meta-model," Proceeding of The Korean Society For Aeronautical And Space Sciences Fall Conference, Nov. 2010, pp.355-358.