• Title/Summary/Keyword: 단층활동시기

Search Result 32, Processing Time 0.019 seconds

K-Ar Age-dating Results of Some Major Faults in the Gyeongsang Basin: Spatio-temporal Variability of Fault Activations during the Cenozoic Era (경상분지 내 주요단층의 K-Ar 연대: 신생대 단층활동의 시·공간적 특성)

  • Song, Yungoo;Sim, Ho;Hong, Seongsik;Son, Moon
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.449-457
    • /
    • 2019
  • We present the K-Ar age-dating results of the bulk and the less than $0.1{\mu}m$ fraction of the fault gouges collected from some major faults in the Gyeongsang basin. We try to determine the timings of fault activation based on the mineralogical characteristics, and to interpret the spatio-temporal variability of the major fault events during the Cenozoic Era by considering together with the previous results. We propose at least the 3-times of major fault events at about 50 Ma, and just after 30 Ma and 20 Ma in the Gyeongsang basin, which were inferred from the combined approach of the K-Ar ages and the clay mineralogy of the bulk fault gouges and the <$0.1{\mu}m$ fractions. The fault activation timings of the Yangsan fault tend to be younger in the northern part than in the southern part. In particular, the inferred fault events just after 30 Ma and 20 Ma are mainly detected in the Ocheon fault and the related faults, and the fault in the Gyeongju area. The fault activation timings of the major faults can be revised accurately by using illite-age-analysis(IAA) method. These geochronological determinations of the multiple events of the major faults in the Gyeongsang basin are crucial to establish the tectonic evolution in the southeastern part of the Korean Peninsula during the Cenozoic Era.

Quaternary Fault Activity of the Yangsan Fault Zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea (울산광역시 울주군 삼남면 일대에 발달한 양산단층대의 제4기 단층운동)

  • Yang, Joo-Seok;Lee, Hee-Kwon
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • We investigated space-time patterns of Quaternary fault activity of the Yangsan fault zone using ESR ages in the Samnam-myeon region, Ulsan, Korea. Some of fault gouge zones consist of well-defined bands which added to the older gouge band, indicative of reactivation. During addition of new bands, the older gouge band was inactive, which represents the type I faulting mode. ESR analyses of each band of the gouge zone allow us to construct history of fault movement. The entire fault gouge zones were reactivated by type III faulting mode giving us ESR ages of the lastest reactivation. ESR dates show temporal clustering into active and inactive periods analogous to historic and paleoseismic fault activities. ESR ages and dates of fault movements indicate migration of fault activities along the Yangsan Fault Zone. Segments of the Quaternary faults in the study area are branched in the south of Sangcheon site. The earliest record of activity in segmented faults is recorded from the western segment to the northern segment. Before 750~850 ka ago, the fault gouge zone from the western segment to the northern segment were active. At 750~850 ka ago, the fault gouge zone from the eastern segment to the northern segment were active. During 630~660 ka and 480~540 ka only the northern segment was active. After 340 ka ago, the fault gouge zone from the western segment to the northern segment were active again.

Timing of the Hydrothermal Alteration Associated with the Fault Activities along the Ulsan Fault Bone, Southeast Korea (울산단층대의 단층활동에 수반된 열수변질작용시기)

  • 조규환;다카기히데오;이와무라아키라;아와지도타;장태우;손승완;이타야테츠마루;오카다도시노리
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.583-593
    • /
    • 2001
  • Clay minerals are common component of fault gouge and have been used to determine the fault activity age using K-Ar dating technique. We carried out XRD and K-Ar analyses of the mica clay minerals from the fault gouge along the Ulsan Fault Zone, southeastern Korea to estimate the timing of the major fault activity. Mica clay minerals for four grain size fractions of 5-2 Um, 2-1 $\mu$m, 1-0.35$\mu$m, and 0.35-0.05 $\mu$m were separated from the gouge samples in the three locations by the hydraulic elutriation and contrifugal separator. Fault gouges are composed of smectite, mica clay minerals, kaolinite, chlorite, quartz, and feldspar. The illite crystallinity of mica clay minerals is the highest in the finest grained fraction with lM polytype, indicating that the aulhigenic mica clay minerals have been concentrated in the fraction. K-Ar ages give some variation from 46 to 35 Ma (330-2), 45 to 39 Ma (16Ww), and 32 to 15 Ma (102Ws) and are the youngest in the finest grained fraction. These results suggest that the hydrothermal alteration associated with the major fault activities along the Ulsan fault Zone took place twice at 39-35 Ma and 15 Ma.

  • PDF

Reactivated Timings of Yangsan Fault in the Northern Pohang Area, Korea (포항 북부지역 양산단층의 재활동 연대)

  • Sim, Ho;Song, Yungoo;Son, Moon;Park, Changyun;Choi, Woohyun;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Here we present the timings of reactivated events from a fault in the northern Pohang area, which should be located at the northern-end of Yangsan fault line, the major fault in the southeastern Korean Peninsula. Recently developed illite-age-analysis (IAA) approach was employed for determining the fault-activated timing, combined with illite-polytype quantification using the optimized full-pattern-fitting (FPF) method, and K-Ar age-dating for each size fraction($<0.1{\mu}m$, $0.1-0.4{\mu}m$, and $0.4-1.0{\mu}m$) of 4 fault clay samples. Two chronological records of brittle fault-activation events were recognized at $19.6{\pm}1.86Ma$ and $26.1{\pm}2.55-27.9{\pm}3.46Ma$. The ages are much younger than those of fault clays from Sangcheon-ri area (41.5~43.5 and 50.7 Ma), the southern part of Yangsan fault line, and are close to the timing of East Sea-opening event. Further chronological analysis for additional sites of the Yangsan fault should be needed to reveal the time-scheme of the tectonic events and their spatial distributions along the fault line.

Reactivated Timings of the Yangsan Fault in the Yeonghae area based on the Mineralogical Characteristics of Fault Clays (단층암 점토광물 특성에 기초한 영해지역 양산단층의 단층활동연대 결정)

  • Hong, Seongsik;Sim, Ho;Choi, Sung-Ja;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.645-654
    • /
    • 2020
  • We present the K-Ar age dating results of <0.1㎛ fraction of the selected fault rocks from the Yangsan fault in the Yeonghae area. Based on the mineralogical characterization, the <0.1㎛ fractions were mostly composed of 1Md illite polytype, or I-S interstratified mineral, which should be formed by fault activation. Therefore, we determined the timings of fault activation events by analyzing K-Ar age-dating for the <0.1㎛ fractions. Accordingly, the activation timings of Yangsan Fault in the Yeonghae area were determined as 45.5±1.1 Ma, 50.9±1.2 Ma, 58.2±1.3 Ma, 60.8±1.4 Ma, 65.3±1.6 Ma, 66.8±1.5 Ma, 67.1±1.5 Ma, and 75.1±1.7 Ma. These results indicate that at least 5-times of major fault events occurred in the Yangsan fault from late Mesozoic to Cenozoic Era. In the outcrop, age dating results tend to be younger age from the location of the oldest sample(75.1±1.7 Ma) toward to the both sides. From the results, it suggests that the fault activation extends from the location of oldest age saple to both sides. This geochronological research of the multiple fault activation ages for the Yangsan Fault will provide crucial information for establishing the tectonic evolution model in the southeastern part of the Korean Peninsula.

Reactivated Timings of Inje Fault since the Mesozoic Era (인제단층의 중생대 이 후 재활동 연대)

  • Khulganakhuu, Chuluunbaatar;Song, Yungoo;Chung, Donghoon;Park, Changyun;Choi, Sung-Ja;Kang, Il-Mo;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • Recently developed illite-age-analysis(IAA) approach was applied to determine the fault-reactivated events for the Inje fault that cut through Precambrian biotite granitic gneiss with NNE-SSW trend in the middle of Korean peninsula. Three distinct fault-reactivated events of shallow crustal regime were recognized using the combined approach of optimized illite-polytype quantification and K-Ar age-dating of clay fractions separated from 4 fault clay samples: $87.0{\pm}0.12Ma$, $65.5{\pm}0.05$ and $66.6{\pm}1.38Ma$, $45.6{\pm}0.15Ma$, respectively. As well, $2M_1$ illite ages of 193~196 Ma and $254.3{\pm}6.96Ma$ were discernible, which may be related to the fault-activated time in the relatively deep crust. The study results suggest that the Inje fault would be firstly formed at $254.3^{\circ}$ ${\ae}6.96Ma$ and sporadically reactivated in shallow regime since about 87 Ma. These reactivation events in shallow regime might be due to the Bulguksa orogeny that would be strongly influenced in Korean peninsula at that time.

Paleoseismological Study and Evaluation of Maximum Earthquake Magnitude along the Yangsan and Ulsan Fault Zones in the Southeastern Part of Korea (남한 남동부 양산단층대와 울산단층대의 고지진 연구와 최대 지진 규모 평가)

  • Kyung, Jai-Bok
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • The paleoseismological study in Korea has begun along the Yangsan fault zone (YFZ) and Ulsan fault zone (UFZ) since 1994. Some evidences related to late Quaternary movement are found at only some part of the YFZ, such as Pyonghae, Yuge, and Eonyang-Tongdosa areas. However, it is found along the most of the UFZ except the northen and southern ends of the fault. The dominant time span of faulting events along the YFZ and UFZ are quite different, and 500 ka to 200 ka and 300 ka to recent time, respectively. The dominant faulting senses of the YFZ and UFZ are right-lateral strike slip and reverse, respectively. These senses correspond well with the focal mechanism of recent occurring earthquakes along these two fault zones. If we evaluate the intensity of the activity of the YFZ from the average slip rate, which is 0.1~0.04 m/ka, it is comparable with the faults of higher C class in Japan. The slip rate of UFZ, which is 0.2~0.06 m/ka, is comparable with the faults of lower B to higher C class. Based on the relationship between maximum displacement and magnitude, the maximum earthquake magnitude is evaluated to be 6.8 and 7.0 in the YFZ and UFZ, respectively. An intensive studies are needed to clarify the problems such as segmentation of faults, return period, and geological evidences related to historical earthquakes.

A review on the K-Ar Ages of Quartz Schist in the Okdong Fault Zone: Robust Enough for the Evidence for the Precambrian Deposition of the Jangsan Formation? (옥동단층대 석영편암의 K-Ar 연령에 대한 검토: 장산층의 선캠브리아기 퇴적에 대한 확실한 증거로 활용 가능한가?)

  • Kim, Myoung Jung;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.67-72
    • /
    • 2018
  • The K-Ar ages of a sericite quartz schist in the lower Jangsan Formation along the Okdong fault zone reported by Yun (1983) have attracted attention again because of their potential to constrain the depositional timing of the Jangsan Formation. The oldest age of $562{\pm}2Ma$ among three reported K-Ar ages in the schist led to the claim that the depositional period of the lowermost Jangsan Formation in the Joseon Supergroup is late Neoproterozoic. Its depositional age is important for understanding the tectonic evolution of the Korean Peninsula including the formation and evolution histories of its sedimentary basins. Thus, the reliability and geological meaning of three K-Ar ages in the original paper (Yun, 1983) were revisited in the review. Quartz grains in the analyzed sample contain a considerable amount of excess Ar, and therefore it is inappropriate to use the ages as a basis for a depositional age constraint of the Jangsan Formation. The timing of mylonitization in the schist is recalculated as ~170 Ma.

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF