Browse > Article
http://dx.doi.org/10.9719/EEG.2015.48.1.41

Reactivated Timings of Inje Fault since the Mesozoic Era  

Khulganakhuu, Chuluunbaatar (Department of Earth System Sciences, Yonsei University)
Song, Yungoo (Department of Earth System Sciences, Yonsei University)
Chung, Donghoon (Department of Earth System Sciences, Yonsei University)
Park, Changyun (Department of Earth System Sciences, Yonsei University)
Choi, Sung-Ja (Korea Institute of Geoscience and Mineral Resources)
Kang, Il-Mo (Korea Institute of Geoscience and Mineral Resources)
Yi, Keewook (Korea Basic Science Institute, Ochang Center)
Publication Information
Economic and Environmental Geology / v.48, no.1, 2015 , pp. 41-49 More about this Journal
Abstract
Recently developed illite-age-analysis(IAA) approach was applied to determine the fault-reactivated events for the Inje fault that cut through Precambrian biotite granitic gneiss with NNE-SSW trend in the middle of Korean peninsula. Three distinct fault-reactivated events of shallow crustal regime were recognized using the combined approach of optimized illite-polytype quantification and K-Ar age-dating of clay fractions separated from 4 fault clay samples: $87.0{\pm}0.12Ma$, $65.5{\pm}0.05$ and $66.6{\pm}1.38Ma$, $45.6{\pm}0.15Ma$, respectively. As well, $2M_1$ illite ages of 193~196 Ma and $254.3{\pm}6.96Ma$ were discernible, which may be related to the fault-activated time in the relatively deep crust. The study results suggest that the Inje fault would be firstly formed at $254.3^{\circ}$ ${\ae}6.96Ma$ and sporadically reactivated in shallow regime since about 87 Ma. These reactivation events in shallow regime might be due to the Bulguksa orogeny that would be strongly influenced in Korean peninsula at that time.
Keywords
Inje fault; K-Ar age-dating; fault clay; illite-age-analysis(IAA); Bulguksa orogeny;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Alt, J.C. and Jiang, W.-T. (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology, v.19, p.570-573.   DOI
2 Cheong C.-S. and Kim, N. (2012) Review of radiometric ages for Phanerozoic granitoids in South Korean Peninsula. Journal of the Petrological Society of Korea, v.21, p.173-191(in Korean with English abstract).   DOI
3 Chung, D., Song, Y., Kang, I.-M. and Park, C.-Y. (2013) Optimization of Illite Polytype Quantification Method. Economic and Environmental Geology, v.46, p.1-9(in Korean with English abstract).   과학기술학회마을   DOI
4 Chung, D., Song, Y., Park, C.-Y., Kang, I.-M., Choi, S.-J. and Khulganakhuu, C. (2014) Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period. Economic and Environmental Geology, v.47, p.29-38(in Korean with English abstract).   과학기술학회마을   DOI
5 Choi, S.J., Chwae, U., Lee, H.-K., Song, Y., and Kang, I.-M. (2012) Review on Chugaryeong Fault. Economic and Environmental Geology, v.45, p.441-446 (in Korean with English abstract).   과학기술학회마을   DOI
6 Choi, P.-B., Kim, H., Lee, S.R., and Kwon, S. (2009) Geological report of the Inje sheet (scale 1:50,000). Korea Institute of Geoscience and Mineral Resources (KIGAM), 58p.
7 Duvall, A.R., Clark, M.K., van der Pluijm, B.A. and Li, C. (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, v.304, p.520-526.   DOI
8 Grathoff, G.H. and Moore, D.M. (1996) Illite polytype quantification using Wildfire calculated X-ray diffraction patterns. Clays and Clay Minerals, v.44, p.835-842.   DOI
9 Grathoff, G.H., Moore, D.M., Hay, R.L. and Wemmer, K. (2001) Origin of illite in the lower Paleozoic of the Illinois basin; evidence for brine migration. Geological Society of America Bulletin, v.113, p.1092-1104.   DOI
10 Haines, S.H. and van der Pluijm, B.A. (2008) Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. J. Structural Geology, v.30, 525-538.   DOI
11 Inoue, A., Utada. M. and Wakita, K. (1992) Smectite-toillite conversion in natural hydrothermal systems. Applied Clay Science, v.7, p.131-145.   DOI
12 Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T. and Ogata, A. (1991) Argon isotopic analysis by newly developed mass spectrometric system for K-Ar dating. Mineralogical Journal, v.15, 203-221.   DOI
13 KIGAM (1995) Geological Map of Korea (1:1,000,000), KIGAM.
14 KIGAM (2012) Active Fault Map and Seismic Harzard Map, KIGAM report (NEMA-자연-2009-24), KIGAM, 899p.
15 Kim, J.C., Ko, H.J., Lee, S.R., Lee, C.B., Choi, S.-J., and Park, K.H. (2001) Explanatory Note of the Gangreung-Sokcho sheet (scale 1:250,000). Korea Institute of Geoscience and Mineral Resources (KIGAM), 76p.
16 Kuwahara, Y., Uehara, S. and Aoki, Y. (1998) Surface microtopography of lath-shaped hydrothermal illite by tapping-mode$^{TM}$, and contact-mode AFM. Clays and Clay Minerals, v.46, p.574-582.   DOI
17 Kuwahara, Y., Uehara, S. and Aoki, Y. (2001) Atomic Force Microscopy study of hydrothermal illite in Izumiyama pottery stone from Arita, Saga prefecture, Japan. Clays and Clay Minerals, v.49, p.300-309.   DOI
18 Lee, D.-S. (1987) Geology of Korea. Geological Society of Korea, Kyohak-sa. 514p.
19 Ludwig, K.R. (2003) User's manual for Isoplot 3.00a Geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
20 Lee, S.G., Shin, S.C., Kim, K,H., Lee, T., Koh, H. and Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon Metamorphic Belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, v.17, p.87-101.   DOI
21 Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S. (eds.) Water-Rock interaction. Balkema, Rotterdam, p.1251-1254.
22 Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, v.96 no. 7, p.3440-3446.   DOI
23 Rahl, J.M., Haines, S.H. and van der Pluijm, B.A. (2011) Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, v.307, p.180-190.   DOI
24 Reynolds, R.C.Jr. (1994) WILDFIRE: a computer program for the calculation of three dimensional X-ray diffraction patterns of mica polytypes and their disordered variation. 8 Brook Rd.
25 Schleicher, A.M., Warr, L.N., Kober, B., Laverret, E. and Clauer, N. (2006) Episodic mineralization of hydrothermal illite in the Soultz-sous-Forts granite (Upper Rhine Graben, France). Contributions to Mineralogy and Petrology, v.152, p.349-364.   DOI
26 Schleicher, A.M., van der Pluijm, B.A. and Warr, L.N. (2010) Nanocoatings of clay and creep of the San Andreas fault at Perkfield, California. Geology, v.38, p.667-670.   DOI
27 van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R., and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175.   DOI
28 Solum, J.G., van der Pluijm, B.A. and Peacor, D.R. (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, v.27, p.1563-1576.   DOI
29 Song, Y., Chung, D., Choi, S.-J., Kang, I.-M., Park, C., Itaya, T. and Yi, K. (2014) K-Ar illite dating to constrain multiple events in shallow crustal rocks: Implications for the Late Phanerozoic evolution of NE Asia. Journal of Asian Earth Sciences, v. 95, p.313-322.   DOI
30 Srodon, J. and Eberl, D.D. (1984) Illite. In Bailey, S.W. (ed.) Micas, Reviews in Mineralogy. Mineralogical Society of America, Washington DC. 13, p.495-544.
31 van der Pluijm, B.A., Vrolijk, P.J., Pevear, D.R., Hall, C.M. and Solum, J.G. (2006) Fault dating in the Canadian Rocky Mountains; Evidence for late Cretaceous and early Eocene orogenic pulse. Geology, v.34, p.837-840.   DOI
32 Vrolijk, P. and van der Pluijm, B.A. (1999) Clay gouge. Journal of Structural Geology, v.21, p.1039-1048.   DOI
33 Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks, W.C.III., Ridley, W.L. (Eds.), Applications of microanalytical techniques to understanding mineralizing processes. Society of Economic Geologists, Socorro: Reviews in Economic Geology, v.7, p.1-35.
34 Williams, I.S. and Claesson, S. (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes. Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology, v.97, p.205-217.   DOI
35 Ylagan, R.F., Pevear, D.R. and Vrolijk, P.J. (2000) Discussion of "Extracting K-Ar ages from shales: a theoretical test". Clay Minerals, v.35 p.599-604.   DOI   ScienceOn
36 Williams, I.S., Cho, D.L. and Kim, S.W. (2009) Geochronology, and geochemical and Nd-Sr isotopic characteristics of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos, v.107, p.239-256.   DOI