• Title/Summary/Keyword: 단층면해

Search Result 413, Processing Time 0.025 seconds

Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds (지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례)

  • Lee, Byung Woo;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • For disaster management and mitigation of earthquakes in Korea Peninsula, active fault investigation has been conducted for the past 5 years. In particular, investigation of sediment-covered active faults integrates geomorphological analysis on airborne LiDAR data, surface geological survey, and geophysical exploration, and unearths subsurface active faults by trench survey. However, the fault traces revealed by trench surveys are only available for investigation during a limited time and restored to the previous condition. Thus, the geological data describing the fault trench sites remain as the qualitative data in terms of research articles and reports. To extend the limitations due to temporal nature of geological studies, we utilized a terrestrial LiDAR to produce 3D point clouds for the fault trench sites and restored them in a digital space. The terrestrial LiDAR scanning was conducted at two trench sites located near the Yangsan Fault and acquired amplitude and reflectance from the surveyed area as well as color information by combining photogrammetry with the LiDAR system. The scanned data were merged to form the 3D point clouds having the average geometric error of 0.003 m, which exhibited the sufficient accuracy to restore the details of the surveyed trench sites. However, we found more post-processing on the scanned data would be necessary because the amplitudes and reflectances of the point clouds varied depending on the scan positions and the colors of the trench surfaces were captured differently depending on the light exposures available at the time. Such point clouds are pretty large in size and visualized through a limited set of softwares, which limits data sharing among researchers. As an alternative, we suggested Potree, an open-source web-based platform, to visualize the point clouds of the trench sites. In this study, as a result, we identified that terrestrial LiDAR data can be practical to increase reproducibility of geological field studies and easily accessible by researchers and students in Earth Sciences.

Study on the Geological Characteristics and Slope Stability of Nammyeon reservoir in Bonghwa County, Kyungpook Province (경북 봉화군 남면저수지 일대의 지질특성 및 비탈면 안정성 검토)

  • Ihm, Myeong Hyeok;Park, Jin Young
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.77-88
    • /
    • 2017
  • The geology of the study area is composed mainly of conglomerate, sandstone, and shale and basalt. It is a rock that has been observed to move relatively recently through various brittle deformation and various stress fields during the recent period. To form a gentle terrain with severe crushing. The slope is located at the intersection of the Taegok Fault in the north-northeast direction and the Bukok Fault in the western north-west direction, and many faults, fault zones and fracture zones of various sizes are developed in the rock bed. In this study, the geological characteristics of the slope are investigated and the countermeasure method is suggested. It is suggested that periodical measurement and analysis should be performed by installing a measuring instrument according to each structure for safety management of the surrounding roads and grounds during construction or reinforcement by the countermeasure method for the slope of the study area.

Quaternary Fault Activity of the Yangsan Fault Zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea (울산광역시 울주군 삼남면 일대에 발달한 양산단층대의 제4기 단층운동)

  • Yang, Joo-Seok;Lee, Hee-Kwon
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • We investigated space-time patterns of Quaternary fault activity of the Yangsan fault zone using ESR ages in the Samnam-myeon region, Ulsan, Korea. Some of fault gouge zones consist of well-defined bands which added to the older gouge band, indicative of reactivation. During addition of new bands, the older gouge band was inactive, which represents the type I faulting mode. ESR analyses of each band of the gouge zone allow us to construct history of fault movement. The entire fault gouge zones were reactivated by type III faulting mode giving us ESR ages of the lastest reactivation. ESR dates show temporal clustering into active and inactive periods analogous to historic and paleoseismic fault activities. ESR ages and dates of fault movements indicate migration of fault activities along the Yangsan Fault Zone. Segments of the Quaternary faults in the study area are branched in the south of Sangcheon site. The earliest record of activity in segmented faults is recorded from the western segment to the northern segment. Before 750~850 ka ago, the fault gouge zone from the western segment to the northern segment were active. At 750~850 ka ago, the fault gouge zone from the eastern segment to the northern segment were active. During 630~660 ka and 480~540 ka only the northern segment was active. After 340 ka ago, the fault gouge zone from the western segment to the northern segment were active again.

Stratigraphy and Geological Structure of the Northwestern Okcheon Metamorphic Belt Near the Chungju Area (충주지역 북서부 옥천변성대의 층서 및 지질구조)

  • Ryu, In-Chang;Kim, Tae-Hoon
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.9-25
    • /
    • 2009
  • The Northwestern Okcheon Metamorphic Belt in the Chungju area consists of the Munjuri Formation, the Daehyangsan Quartzite, the Hyangsanri Dolomite, and the Gyemyeongsan Formation, but the stratigraphy is still controversial. For a stratigraphic study, detailed stratigraphic sections were measured in two locations and mapping was carried out in the study area. The Munjuri Formation and the Daehyangsan Quartzite changed gradually in north and south section, but bedding parallel faults have developed in the boundary between two formations. The Daehyangsan Quartzite and the Hyangsanri Dolomite are conformable. Fault have developed in boundary between the Hyangsanri Dolomite and the Gyemyeongsan Formation. As a result of mapping in the study area, folding was recognized with $41^{\circ}/280^{\circ}$ plunging axis in the north part of the study area. Therefore, the bedding-parallel faults in the boundary might have occurred resulting from a layer parallel slip during the folding as well as the thrust. These results from this study and previous studies indicate that bedding-parallel faults in boundary between the Munjuri Formation and the Daehyangsan Quartzite are caused by a layer parallel slip during the folding. The fault between the Hyangsanri Dolomite and the Gyemyeongsan Formation is considered as a thrust fault, thereby the uppermost Gyemyeongsan Formation is placed under the Munjuri Formation. However the Gyemyeongsan Formation and the Munjuri Formation have similar age and rock composition. Hence, the Gyemyeongsan Formation is considered as an equivalent one with the Munjuri Formation. Therefore, the stratigraphy of Northwestern Okcheon Metamorphic Belt consists of the Gyemyeongsan/ Munjuri formations, the Daehyangsan Quartzite, and the Hyangsanri Dolomite in ascending order.

Behavioral Characteristics of the Yangsan Fault based on Geometric Analysis of Fault Slip (단층슬립의 기하분석에 의한 양산단층의 거동 특성)

  • Chang, Chun-Joong;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • In order to assess the fault behavior by the geometric analysis of fault slip, the study area between Yangsan city and Shinkwang-myon, Pohang city along the strike of the Yangsan fault is divided into 5 domains($A{\sim}E$ domains) based on the strike change of main fault, the type of fault termination, the cyclic variation of fault zone width, deformation pattern of fault rocks and angular deviation of secondary shears. And, we would apply the relationship between the mode of fault sliding and the resultant deformation texture obtained from previous several experimental studies of simulated fault gouge to the study of the Yangsan fault. To understand sliding behavior of the fault we measured the data of fault attitude and fault slip, and analyzed relationships between the main fault and secondary Riedel shear along the Yangsan fault. The sliding behavioral patterns in each section were analyzed as followings; the straight sections of A, D and E domains were analyzed as the creeping section of stably sliding. In contrast, the curved section of B domain was analyzed as the locked section of stick-slip movement.

The characteristics of quaternary fault and coastal terrace around Suryumri area. (수렴리 일대에 발달하는 신기단층 및 해안단구의 층서 고찰)

  • 이병주;감주용;양동윤;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.133-149
    • /
    • 2000
  • The study area which contains the coastal terrace of the southeastern part of Korean peninsula, well developed the lineaments which are NNE, NE and WNW directions. The area crops out Cretaceous sedimentary rocks and granite porphyry, Tertiary conglomerate, tuffite and basalt and Quarternary deposits. Coastal terraces are subdivided into low, middle and upper terraces(LT, MT, UT) based on the topographic levels. Terrace gravels are deposited on these wave-cut erosional surface during the initial lowering stage of sea level fluctuation. Terrace gravels are typified by granule to pebble layers with slightly inclined beddings. These gravels are interpreted as beach gravels belonging to berm or swash zone based on the present distribution of beach gravels. The Suryum fault is characterized by the thrust which is gradationally changing the strike from ENE to NNE. The extension of the fault is about 200m and Maximum displacement is about 1.5m.

  • PDF

Gravity and Magnetic Model Study of Block Ⅵ-2, Offshore Korea (한국근해 제 6광구에 대한 중력 및 자력 모델 연구)

  • Baag Czango;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-46
    • /
    • 1993
  • Two-dimensional gravity and magnetic models were constructed for seismic profiles in Block Ⅵ-2, offshore Korea. For each seismic profile, a longer length model showing geometric configurations of all employed polygonal bodies and an expanded version of the area of interests were made. The results of this modeling study indicate 1) that the depth to the deeper basement surface appear to be shallower than indicated in the seismic sections, 2) that the Middle Miocene section (the bottom formations in the models) appears to contain significant amounts of volcanic materials, 3) that identification and/or determination of depth to the top of basement is difficult in the study area due to thick volcanic materials in the lowermost formation (Middle Miocene), and 4) that the study area is unfavorable for hydrocarbon generation and accumulation due to wide spread volcanic activities during the Middle Miocene Epoch. The maximum calculated depth to the magnetic basement in the study area is approximately $4{\cal}km$ sub-sea.

  • PDF

An Analysis of the Fault Plane Solution and Intensity on the Iksan Earthquake of 22 December 2015 (2015년 12월 22일 발생한 익산지진의 단층면해와 진도 분석)

  • Kim, Jin-Mi;Kyung, Jai Bok;Kim, Kwang-Hee
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.561-569
    • /
    • 2017
  • Fault plane solutions of the Iksan earthquake ($M_L=3.85$) and two aftershocks were obtained using the FOCMEC (FOCal MEChanism determination) program. The main event showed the characteristic of strike slip faulting with reverse component. It has the fault planes with NE-SW or NW-SE direction. This is similar to the fault characteristics of earthquake pattern in the inland area of the Korean Peninsula. In order to detect micro-earthquake events, continuous seismic waveform data of the thirteen seismic stations within a radius of 100km from epicenter were analyzed by PQLII program (PASSCAL, 2017) for the period from December 15, 2015 to January 22, 2016. The epicenters of nineteen micro-events were newly determined by Hypoinverse-2000 program. They are not concentrated along some lineaments or fault lines. The intensity of the Iksan earthquake was obtained by estimating the telephone inquiries, the degree of ground shaking or damage all around the southern peninsula. The instrumental intensity was also obtained using PGA (Peak Ground Acceleration) records. As a result, the maximum MM intensity was estimated to be V near the epicenter.

Estimation of Usable Cut-out Volume Considering the Structural and Engineering Properties of Rock Mass (암반의 구조적 및 공학적 특성을 고려한 가용절취량 산정)

  • 이창섭;홍관석;조태진
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • Structural and geological engineering properties of the rock mass distributed in the Yokmang mountain area were investigated to detenninc the usable cut-out volume and quarrying efficiency. The study area is located in the southern tip of the Yangsan fault system which controls the geological structure of the Kvungsang basin. As a result, the study area is mainly composed of andesicic. rhyolitic. and granitic rocks of the Cretaceous Kyungsang Supergroup and a series of right-handed strike-slip faults is developed along NNE-SSW direction. These regional faults significantly affect the spatial and meclwnical characteristics of joints such as spacing, frequency, and compressive strength. The joint frequency is highest along the fault zones and decreases toward the remote region. Based on the geological information obtained from the field survey, the detailed structure of the Yokmang mountain was analyzed and the volume of the rock mass was assessed. Considering the minimum rock block size required for the construction of a coastal dumping site, potential cut-out volume is then estimated to be 4,018,000m$^3$ the volume % of which is 48% of Yokmang mountain including the soil and weathered rock and 61% of the unweathered rock mass.

  • PDF

Fault plane solutions of the December 13, 1996 Yeongweol earthquake (1996년 12월 13일 영월지진의 진원단층면 방향)

  • Park, Chang Eop;Sin, Jin Su;Ji, Heon Cheol;Gang, Ik Beom;Ryu, Yong Gyu
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • Fault-plane solutions of the December 13, 1996 Yeongweol earthquake with magnitude 4.5 is obtained using the grid test technique. Thirty polarities of P waves recorded at KMA, KIGAM, KSRS and JAPAN stations are used for the event. The obtained fault plane solution shows strike-slip motion with significant amount of thrust component. The orientation of the fault is 180±20° in strike, 50±5° in dip and 150±5° in rake, or 292±3° in strike, 65±5° in dip and 30±10° in rake. These solutions are similar to those of earthquakes occurred at Sagju (Jan. 7, 1980), Pohang (Apr. 15, 1981) and offshore Gunsan (Oct. 6, 1976). The compressional axis of the stress field is trending from ENE to WSW, which is consistent with the previously defined typical regional tectonic stress orientation in and around Korean Peninsula.

  • PDF