• 제목/요약/키워드: 단조

검색결과 1,514건 처리시간 0.024초

국부 요소망재구성 기법을 이용한 정밀 단조시뮬레이션 (Precise Forging Simulation by a Local Remeshing Technique)

  • 류찬호;박재민;전만수
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.180-185
    • /
    • 2000
  • In this paper, a local remeshing technique assisted by flexible user-interface capabilities is presented for precise forging simulation. The rigid-plastic finite element formulation is introduced and the detailed approach to the new local remeshing technique is given. A piercing process in cold forging is simulated by the presented technique and the simulated results are compared with those obtained by the technique and the simulated results are compared with those obtained by the conventional approach and experiments. A typical application example is also given, which emphasizes the capability of the local remeshing technique in forging simulation.

  • PDF

구형관입에 의한 S2 얼음의 균열 (Cracking of S2 Ice by Spherical Indentation)

  • 고상용
    • 한국해양공학회지
    • /
    • 제12권3호통권29호
    • /
    • pp.42-48
    • /
    • 1998
  • 구형 관입시험에 의한 얼음의 균열을 연구 하였다. $-10^{circ}C$에서 S2 기둥얼음의 시편(152mm X 152mm X 152mm)에 stainless 강으로 된 구(지름 25.4mm)로 하중을 가하였다. 구형indentor는 얼음 시편의 장축인 기둥방향에 수직으로 하중을 가하였으며 이때 변위율은 0.038mm/s로 하여 단조증가 하중 시험을 하였다. 하중을 가하기 시작하면 indentor 하부에서 crushing 이 발생하고, 하중이 증가함에 따라서 방사선 균열 또는 횡균열이 성장하여 splitting 또는 spallation이 발생하였다. 단조증가 하중 때와 동일한 indentor를 사용하여 하중 및 비하중율 0.5KN/s로 맥박하중을 가할 때 이들 방사선 균열 및 횡 균열이 발생 성장하였다. 첫 맥박 하중의 크기는 1KN으로 하고 그 뒤 계속 이어지는 시험은 맥박 하중의 크기를 증가시킨 뒤 행하였으며 균열 길이는 맥박과 맥박 사이에서 계측 하였다. 기타 취성고체에서 관찰 되었던 것과 같이 방사선 균열 및 측면균열의 길이는 impression 반지름과 하나의 지수법칙이 성립함을 보여주었다.

  • PDF

등속조인트 하우징의 냉간단조 공정설계 (Process Sequence Design in Cold Forging of Constant Velocity Joint Housing)

  • 이진희;강범수;김병민
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2234-2244
    • /
    • 1994
  • A process sequence of multi-operation cold forging for actual application in industry is designed with the rigid-plastic finite element method to form a constant velocity joint housing(CVJ housing). The material flow during the CVJ housing forming is axisymmetric until the final forging process for forming of ball grooves. This study treats the deformation as an axisymmetric case. The main objective of the process sequence design is to obtain preforms which satisfy the design criteria of near-net-shape product requiring less machining after forming. The process sequence design also investigates velocity distributions, effective strain distributions and forging loads, which are useful information in the real process design.

리브-웨브형 정밀단조에 관한 상계요소해석 (UBET Analysis on Precision Rib-Web Forgings)

  • 이종헌;김영호;배원병
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1211-1219
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flash and flashless forgings. The simulation for flash and flashless forgings are applied axisy mmetric and plane-strain closed-die forging with rib-web type cavity. Inverse triangular and inverse trapezoidal elements are used to analyze flashless forging. The analysis is described for merit of flashless precision forging. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load and the flow pattern are in good agreement with experimental results.

복합단조 공정의 유한요소해석 (Finite Element Analysis of Compound Forging Processes)

  • 전만수;문호근;이민철;서대윤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.546-550
    • /
    • 1996
  • A fully automatic computer simulation technique of axisymmetric multi-stage compound forging processes was presented in this paper. A penalty rigid-viscoplastic finite element method was employed together with an improved looping method for automatically remeshing with quadrilateral finite-elements only. An application example of six-stage axisymmetric forging processes involving one cold and two hot forging processes, two piercing processes and a sizing process was given with emphasis on automatically tracing the metal flow lines through the whole simulation.

  • PDF

로터 폴 단조 공정의 정밀 삼차원 시뮬레이션 및 결과의 검증 (Three-Dimensional Simulation of a Rotor Pole Forging Process and Verification of the Results)

  • 고병호;이민철;제진수;전만수
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.158-162
    • /
    • 2002
  • In this paper, the usefulness of a three-dimensional forging simulation technique is verified through its application to process design in rotor pole forging. A simulator, AFDEX3D developed based on the rigid-plastic finite element method and hexahedral elements, is employed. The simulated results of an application example found in a precision forging company are compared with the actually forged ones in detail. It has been verified that the simulation results are in good agreement with the actual phenomena.

상계요소법을 이용한 평면변형 단조에 관한 연구 (A study on plane-strain forging using UBET)

  • 이종헌;김진욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.7-15
    • /
    • 1998
  • An upper bound elemental technique(UBET) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flash and flashless forgings. The program consists of forward and backward tracing processes. In the forward program, flash, die filling and forging load are predicted. In backward tracing process, the optimum dimensions of initial billet in conventional forging are determined from the final-shape data based on flash design. And the analysis is described for merit of flashless precision forging. Experiments are carried out with pure plasticine billets at room temperature. The theoretical predictions of forging load and flow pattern are in good agreement with the experimental results.

  • PDF

등속조인트 외륜 열간단조의 금형수명 향상을 위한 단조공정 유한요소해석 (FE Analysis of Forging Process for Improving Tool Life in Hot Forging of CV Joint Outer Race)

  • 김용조
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.56-62
    • /
    • 2014
  • During the hot forging process, the most common cause of tool failure is wear. Tool wear results in the gradual loss of part tolerances, after which eventually the tool must be replaced or repaired. In order to maximize the lifetimes of forging tools, it is important to investigate the wear mechanisms of these tools. In this study, the hot forging of the outer race of an automotive constant-velocity joint was analyzed by a finite element method to investigate the wear distribution, especially the amount and location of the maximum expected wear damage, using Archard's wear model, which was modified considering the forging temperature. Forging analyses were carried out after modifying blocker forging tools based on established versions. The modified blocker tools resulted in an increase in the tool life up to 31% with a finisher punch.

축대칭 열간단조를 위한 자동설계 시스템 개발 (Development of an Automatic Design System for Axisymmetric Hot Steel Forging)

  • 김대영;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.117-125
    • /
    • 1998
  • A hot forging product in general is produced through buster, blocker and finisher processes. Usually the processes including dies are designed by experienced forging engineers. However, due to the lack of such engineers, it is necessary to develop expert systems with which engineers of little experience can perform the design task. In the present study, an expert system is developed for axisyrnmetric hot steel forgings. It is a rule based system written in Fortran and AutoLISP, operating on a personal computer. In this paper, structures of the system are summarized and capabilities of the system are examined through several examples.

  • PDF

원 웨이 클러치 이너 레이스의 정밀 열간 단조 공정설계에 관한 연구 (Process Design Molding with Precision Hot Forging of One-Way Clutch Inner Race)

  • 김화정;진철규
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.83-90
    • /
    • 2018
  • In this research, we developed a process design hot-forging technology that precisely forms an inner race. The inner race transmits power to a one-way clutch of an automatic transmission and minimizes the CNC machining allowance. For a multi-stage hollow shape (inner race), we proposed several shapes of blocker and finisher for the precision hot-forging process and analyzed the forging process using DEFORM. The hot-forging process was optimized for several parameters, such as metal flow pattern, forging defect, and forming load. Blockers and finisher dies in the hot-forging process were designed to select optimal shapes from finite element analysis, and experiments were conducted to optimize the hot-forging process.