• Title/Summary/Keyword: 단일분류

Search Result 789, Processing Time 0.025 seconds

Prediction of Cardiovascular Disease Steps using Support Vector Machine Ensemble (SVM 앙상블을 이용한 심혈관질환 질환단계 예측)

  • Eom Jae-Hong;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.76-78
    • /
    • 2006
  • 현재 심혈관 질환은 암 다음으로 높은 사망 원인으로 기록되고 있어 심혈관 질환에 대한 초기 진단은 질환의 치료에 매우 중요한 문제로 대두되고 있다. 본 논문에서는 SVM을 이용하여 심혈관질환 환자의 질환 단계를 예측하였다. 일반적으로 이진분류에 사용되는 SVM을 이용하여 정상 및 질환 $1{\sim}3$기의 총 4가지 분류가 필요한 다분류 분류문제를 처리하기 위해서 논문에서는 독립적 학습된 단일 SVM 분류기들을 결합하여 분류를 수행하는 SVM 앙상블 방법을 사용하였다. 단일 분류기의 결합은 Majority voting, 최소자승에러기반 가중치 부여, 2단계층 결합 등의 방법으로 수행하여 심혈관 질환 분류에 적합한 앙상블의 구성을 시도하였다. 실험 데이터는 (주)제노프라의 압타머 칩 데이터를 사용하였다. 서로 다른 데이터를 이용하여 학습된 이종의 SVM들을 결합한 결과 질환단계 예측에 있어서 단일 SVM을 이용하여 질환 단계를 예측하는 경우 보다 향상된 질환단계 예측 성능을 관찰할 수 있었으며, 심혈관 질환의 예측에 대해서는 단일 SVM 분류기의 2단 계층 결합법이 가장 좋은 성능을 보임을 확인하였다.

  • PDF

An Object Image Classification Using Hierarchical Neural Network (계층적 신경망을 이용한 객체 영상 분류)

  • Kim, Jong-Ho;Lee, Jae-Won;Kim, Sang-Kyoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.281-284
    • /
    • 2003
  • 본 연구는 웨이블릿 변환을 통하여 객체 영상에서 질감 특징 값을 추출하고, 신경망을 계층적으로 구성하여 분류하는 방법을 제안한다. 기존의 신경망을 이용한 영상의 분류는 단일 신경망을 이용하는 것이 대부분이었다. 하지만 단일 신경망은 분류하고자 하는 클래스의 수가 많거나 분류하고자 하는 대상이 유사한 입력패턴을 가질 경우 학습시간이 오래 걸리고, 인식률이 크게 떨어지는 문제를 가지고 있다. 그래서 본 연구에서는 효과적인 객체 영상 분류를 위해서 여러 개의 단일 신경망을 계층적으로 결합하는 방법을 제안한다. 실험결과 분류 대상 클래스가 증가함에도 불구하고 단일 신경망에 비해 학습시간이 단축되고, 높은 인식률을 보여주었다.

  • PDF

Performance Evaluation of One Class Classification to detect anomalies of NIDS (NIDS의 비정상 행위 탐지를 위한 단일 클래스 분류성능 평가)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.15-21
    • /
    • 2018
  • In this study, we try to detect anomalies on the network intrusion detection system by learning only one class. We use KDD CUP 1999 dataset, an intrusion detection dataset, which is used to evaluate classification performance. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve relatively high classification efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data. In this study, we use one class classifiers based on support vector machines and density estimation to detect new unknown attacks. The test using the classifier based on density estimation has shown relatively better performance and has a detection rate of about 96% while maintaining a low FPR for the new attacks.

Detection of Car Hacking Using One Class Classifier (단일 클래스 분류기를 사용한 차량 해킹 탐지)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.33-38
    • /
    • 2018
  • In this study, we try to detect new attacks for vehicle by learning only one class. We use Car-Hacking dataset, an intrusion detection dataset, which is used to evaluate classification performance. The dataset are created by logging CAN (Controller Area Network) traffic through OBD-II port from a real vehicle. The dataset have four attack types. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve high efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data, which are new attacks. In this study, we use one class classifier to detect new attacks that are difficult to detect using signature-based rules on network intrusion detection system. The proposed method suggests a combination of parameters that detect all new attacks and show efficient classification performance for normal dataset.

다중 시기/편광 SAR 자료를 이용한 지표 피복 구분

  • Park, No-Uk;Ji, Gwang-Hun;Gwon, Byeong-Du
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.79-84
    • /
    • 2005
  • 이 논문에서는 구름과 같은 기상 상태의 제약 없이 자료 획득이 가능한 SAR 자료를 이용하여 토지 피복 특성을 구분하고자 하였다. 기존 단일 주파수, 편광 상태의 자료만을 제공하는 SAR 자료를 이용한 분류에서의 낮은 분류 정확도를 향상시키고자 이 논문에서는 다중 시기 C 밴드 자료이면서 서로 다른 편광 상태의 자료를 제공하는 Radarsat-1(HH)와 ENVISAT(VV) 자료를 분류에 이용하였다. 분류 기법으로 Random Forests를 적용한 결과, 단일 편광 상태의 자료만을 이용하였을 때에 비해서 보다 향상된 분류 정확도를 얻을 수 있었다.

  • PDF

A Symptom based Taxonomy for Network Security (네트워크상에서의 징후를 기반으로 한 공격분류법)

  • Kim Ki-Yoon;Choi Hyoung-Kee;Choi Dong-Hyun;Lee Byoung-Hee;Choi Yoon-Sung;Bang Hyo-Chan;Na Jung-Chan
    • The KIPS Transactions:PartC
    • /
    • v.13C no.4 s.107
    • /
    • pp.405-414
    • /
    • 2006
  • We present a symptom based taxonomy for network security. This taxonomy classifies attacks in the network using early symptoms of the attacks. Since we use the symptom it is relatively easy to access the information to classify the attack. Furthermore we are able to classify the unknown attack because the symptoms of unknown attacks are correlated with the one of known attacks. The taxonomy classifies the attack in two stages. In the first stage, the taxonomy identifies the attack in a single connection and then, combines the single connections into the aggregated connections to check if the attacks among single connections may create the distribute attack over the aggregated connections. Hence, it is possible to attain the high accuracy in identifying such complex attacks as DDoS, Worm and Bot We demonstrate the classification of the three major attacks in Internet using the proposed taxonomy.

KE-T5-Based Text Emotion Classification in Korean Conversations (KE-T5 기반 한국어 대화 문장 감정 분류)

  • Lim, Yeongbeom;Kim, San;Jang, Jin Yea;Shin, Saim;Jung, Minyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.496-497
    • /
    • 2021
  • 감정 분류는 사람의 사고방식이나 행동양식을 구분하기 위한 중요한 열쇠로, 지난 수십 년간 감정 분석과 관련된 다양한 연구가 진행되었다. 감정 분류의 품질과 정확도를 높이기 위한 방법 중 하나로 단일 레이블링 대신 다중 레이블링된 데이터 세트를 감정 분석에 활용하는 연구가 제안되었고, 본 논문에서는 T5 모델을 한국어와 영어 코퍼스로 학습한 KE-T5 모델을 기반으로 한국어 발화 데이터를 단일 레이블링한 경우와 다중 레이블링한 경우의 감정 분류 성능을 비교한 결과 다중 레이블 데이터 세트가 단일 레이블 데이터 세트보다 23.3% 더 높은 정확도를 보임을 확인했다.

  • PDF

Ensemble Learning of Region Based Classifiers (지역 기반 분류기의 앙상블 학습)

  • Choe, Seong-Ha;Lee, Byeong-U;Yang, Ji-Hun;Kim, Seon-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.267-270
    • /
    • 2007
  • 기계학습에서 분류기들의 집합으로 구성된 앙상블 분류기는 단일 분류기에 비해 정확도가 높다는 것이 입증되었다. 본 논문에서는 새로운 앙상블 학습으로서 데이터의 지역 기반 분류기들의 앙상블 학습을 제시하여 기존의 앙상블 학습과의 비교를 통해 성능을 검증하고자 한다. 지역 기반 분류기의 앙상블 학습은 데이터의 분포가 지역에 따라 다르다는 점에 착안하여 학습 데이터를 분할하고 해당하는 지역에 기반을 둔 분류기들을 만들어 나간다. 이렇게 만들어진 분류기들로부터 지역에 따라 가중치를 둔 투표를 하여 앙상블 방법을 이끌어낸다. 본 논문에서 제시한 앙상블 분류기의 성능평가를 위해 UCI Machine Learning Repository에 있는 11개의 데이터 셋을 이용하여 단일 분류기와 기존의 앙상블 분류기인 배깅과 부스팅등의 정확도를 비교하였다. 그 결과 기본 분류기로 나이브 베이즈와 SVM을 사용했을 때 새로운 앙상블 방법이 다른 방법보다 좋은 성능을 보이는 것을 알 수 있었다.

  • PDF

An Experimental Study on Categorization of Web Documents Using an Ensemble Classifier (복합 분류기를 이용한 웹 문서 범주화에 관한 실험적 연구)

  • 이혜원;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.73-82
    • /
    • 2003
  • 본 연구에서는 웹 문서를 분류하기 위해 문서로부터 다양한 자질을 추출하고, 두 가지의 분류기를 통해 여러 개의 분류 예측치를 구한 다음, 그것들을 하나의 결과물로 통합하는 복합분류기를 사용하였다. 먼저 다양한 자질 집합에 대해 일반적으로 많이 사용되는 kNN(k nearest neighbor) 분류기와 나이브 베이즈(Naive Bayes) 분류기를 사용한 범주화 실험을 수행하고, 실험을 통해 나온 범주 예측치를 통합하는 복합 분류기들의 성능을 비교하였다. 또한 단일 분류기들을 통해 나온 모든 범주 예측치를 통합하는 과정을 수행하여, 단일 분류기만을 사용할 경우와 복합 분류기를 사용할 경우를 비교해 더 좋은 성능을 나타내는 분류기를 밝히고자 한다.

  • PDF

Multi-site based earthquake event classification using graph convolution networks (그래프 합성곱 신경망을 이용한 다중 관측소 기반 지진 이벤트 분류)

  • Kim, Gwantae;Ku, Bonhwa;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.615-621
    • /
    • 2020
  • In this paper, we propose a multi-site based earthquake event classification method using graph convolution networks. In the traditional earthquake event classification methods using deep learning, they used single-site observation to estimate seismic event class. However, to achieve robust and accurate earthquake event classification on the seismic observation network, the method using the information from the multi-site observations is needed, instead of using only single-site data. Firstly, our proposed model employs convolution neural networks to extract informative embedding features from the single-site observation. Secondly, graph convolution networks are used to integrate the features from several stations. To evaluate our model, we explore the model structure and the number of stations for ablation study. Finally, our multi-site based model outperforms up to 10 % accuracy and event recall rate compared to single-site based model.