• Title/Summary/Keyword: 단일루프 단일벡터 방법

Search Result 5, Processing Time 0.022 seconds

Improvement of the Convergence Capability of a Single Loop Single Vector Approach Using Conjugate Gradient for a Concave Function (오목한 성능함수에서 공액경사도법을 이용한 단일루프 단일벡터 방법의 수렴성 개선)

  • Jeong, Seong-Beom;Lee, Se-Jung;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.805-811
    • /
    • 2012
  • The reliability based design optimization (RBDO) approach requires high computing cost to consider uncertainties. In order to reduce the design cost, the single loop single vector (SLSV) approach has been developed for RBDO. This method can reduce the cost in calculating deign sensitivity by elimination of the nested optimization process. However, this process causes the increment of the instability or inaccuracy of the method according to the problem characteristics. Therefore, the method may not give accurate solution or the robustness of the solution is not guaranteed. Especially, when the function is concave, the process frequently diverges. In this research, the concept of the conjugate gradient method for unconstrained optimization is utilized to develop a new single loop single vector method. The conjugate gradient is calculated with gradient directions at the most probable points (MPP) of previous cycles. Mathematical examples are solved for the verification of the proposed method. The numeri cal performances of the obtained results are compared to those of other RBDO methods. The SLSV approach using conjugate gradient is not greatly influenced by the problem characteristics and improves its convergence capability.

Reliability-Based Topology Optimization Using Single-Loop Single-Vector Approach (단일루프 단일벡터 방법을 이용한 신뢰성기반 위상최적설계)

  • Bang Seung-Hyun;Min Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.889-896
    • /
    • 2006
  • The concept of reliability has been applied to the topology optimization based on a reliability index approach or a performance measure approach. Since these approaches, called double-loop single vector approach, require the nested optimization problem to obtain the most probable point in the probabilistic design domain, the time for the entire process makes the practical use infeasible. In this work, new reliability-based topology optimization method is proposed by utilizing single-loop single-vector approach, which approximates searching the most probable point analytically, to reduce the time cost. The results of design examples show that the proposed method provides efficiency curtailing the time for the optimization process and accuracy satisfying the specified reliability.

Reliability-Based Shape Optimization Under the Displacement Constraints (변위 제한 조건하에서의 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

Reliability-Based Shape Optimization Under the Stress Constraints (응력 제한조건하의 신뢰성 기반 형상 최적설계)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.469-475
    • /
    • 2010
  • The objective of this study is to integrate reliability analysis into shape optimization problem using the evolutionary structural optimization (ESO) in the application example. Reliability-based shape optimization is formulated as volume minimization problem with probabilistic stress constraint under minimization max. von Mises stress and allow stress. Young's modulus, external load and thickness are considered as uncertain variables. In order to compute reliability index, four methods, i.e., reliability index approach (RIA), performance measure approach (PMA), single-loop singlevector (SLSV) and adaptive-loop (ADL), are used. Reliability-based shape optimization design process is conducted to obtain optimal shape satisfying max. von Mises stress and reliability index constraints with the above four methods, and then each result is compared with respect to numerical stability and computing time.

Exploration of Functional Parallelism using threads (스레드를 이용한 함수 병렬성 추출)

  • 김현철;이성우;류시룡;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10c
    • /
    • pp.633-635
    • /
    • 2000
  • 본 논문에서는 프로그램을 루프 구조에 근거하여 계층적으로 표현한 HTG (Hierarchical Task Graph)의 복합 노드 태스크들을 공유 메모리 다중처리기 환경에서의 효율적 수행을 위한 새로운 스케쥴링 기법을 제안한다. 단일처리기의 멀티스레드 구조를 비롯한 여러 플랫폼에 적용하기 위해 자바의 스레드를 사용하여 구현하였으며, 기존의 HTG의 함수 병렬성을 위한 비티 벡터 알고리즘과 성능을 비교 분석하였다. 실험 결과에서 보듯이, 제안된 기법이 비트 벡트 방법에 비해 수행 시간 측면에서 효율적임을 알 수 있으며 또한, 좋은 부하 균형을 유지하였다.

  • PDF