• Title/Summary/Keyword: 단위질량

Search Result 198, Processing Time 0.027 seconds

A Proposal of Tensile Strength Prediction Models Considering Unit Weight of Concrete (콘크리트의 기건 단위질량을 고려한 인장강도 예측모델 제안)

  • Sim, Jae Il;Yang, Keun Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.107-115
    • /
    • 2012
  • The present study evaluates the validity of different equations specified in code provisions and proposed by the existing researchers to predict the concrete tensile capacities (direct tensile strength, splitting tensile strength and modulus of rupture) using a comprehensible database including 361 lightweight concrete (LWC), 1,335 normal-weight concrete (NWC) and 221 heavy-weight concrete (HWC) specimens. Most of the equations express the concrete tensile strengths as a function of its compressive strength based on the limited NWC concrete test data. However, the present database shows that the concrete tensile capacities are significantly affected by its unit weight as well. As a result, the inconsistency between experiments and predictions by the different models increases when the concrete unit weight is below 2,100 kg/$m^3$ and concrete compressive strength is above 50 MPa. On the other hand, new models proposed by the present study considering the concrete unit weight predict the tensile strengths of concrete with more accuracy.

Correlation Analysis between Unit Weight and Thermal Conductivity in Porous Concrete Containing Natural Fine and Bottom Ash Aggregates (바텀애시와 천연 잔골재를 혼입한 다공성 콘크리트의 단위질량과 열전도도의 상관분석)

  • Seung-Tae Jeong;In-Hwan Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.542-551
    • /
    • 2023
  • In this paper, the thermal properties of porous concrete containing natural fine aggregates in bottom ash aggregates were analyzed. In this study, natural fine aggregates were used for bottom ash aggregates to understand the material properties of each aggregate and then used as an aggregate for porous concrete. A porous concrete specimen was manufactured by fixing the water-binder ratio at 0.25 and designating the compaction at 0.5, 1.5, and 2.5 MPa. Unit weight, total void ratio and thermal conductivity test were measured and discussed. As the compaction increased and the mixing ratio of natural fine aggregates increased, the unit weight and thermal conductivity increased, and the total void ratio decreased. In addition, the correlations between unit weight, total void ratio and thermal conductivity of porous concrete with previous experimental data were presented and the correlation coefficient (R2) was also analyzed.

Fluidity, Compressive strength and Unit Weight Characteristics of Mortar According to the Replacement Rate of Bottom Ash Aggregate (바텀애시 골재 대체율에 따른 모르타르의 유동성, 압축강도 및 단위질량 특성)

  • Bae, Sung-Ho;Youn, Joo-Ho;Lee, Jae-Sung;Lee, Jae-In;Kim, Ji-Hwan;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.180-181
    • /
    • 2021
  • This study compared and analyzed the fluidity, compressive strength, and unit weight characteristics of mortar using bottom ash aggregates as part of a study to develop alternative aggregates

  • PDF

FES(Flywheel Energy Storage) is ready for HEV(Hybrid Electric Vehicle) (하이브리드 자동차를 위한 플라이 휠 에너지 저장 기술)

  • Ahn Hyeong-Joon;Park In-Hwang;Han Dong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.366-369
    • /
    • 2005
  • 최근 환경 및 에너지 문제가 자동차 산업의 중요한 이슈로 인식되면서 하이브리드 자동차(Hybrid Electric Vehicle) 기술과 연료 전지 자동차(Fuel Cell Vehicle)등이 주목받고 있다. 특히 하이브리드 자동차는 요구되는 동력과 생성되는 동력의 차이 때문에 순시 동력 저장 장치 (peak power buffer)가 필요한데, 반복적인 충/방전 싸이클에서 용량의 감소 없이 높은 단위 질량당의 동력과 에너지를 가지며 부피, 효율, 수명 면에서도 우수한 플라이 휠 에너지 저장장치가 이러한 동력 저장 장치로 적합하다. 본 논문은 하이브리드 자동차를 위한 플라이 휠 에너지 저장 장치의 현 상태 (state of art)를 기술한다. 첫번째로, 플라이 휠 에너지 저장장치의 기원과 배경을 설명한다. 두 번째로 하이브리드 자동차를 위한 플라이 휠 에너지 저장 장치의 세부 사항을 요약하고, 플라이 휠 에너지 저장을 이용한 하이브리드 자동차의 예와 플라이 휠 에너지 저장장치의 설계 쟁점과 자동차에 적용시키기 위한 최근 기술적 진보를 논의한다. 마지막으로, 플라이 휠 에너지 저장장치의 파급 효과와 다른 적용 예를 소개한다.

  • PDF

Size Effect of Concrete Compressive Strength Considering Dried Unit Weight of Concrete (콘크리트의 기건단위질량을 고려한 콘크리트 압축강도의 크기효과)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Yi, Seong-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • Since the size effect law announced currently has been based on the normal weight concrete, for light weight concrete having different fracture characteristics, its application is questionable. Accordingly, in this study, a model equation to predict the effect of dried unit weight of the concrete on size effect of its compressive strength was developed and a database using existing research results was created. After determining the experimental constants of prediction models of Ba${\check{z}}$ant based on nonlinear fracture mechanics, Kim and Eo, and this study using the database, their results are mutually compared. Finally, it was found that the prediction model of this study considered dried unit weight of concrete predicted well the test results for light weight concrete than that of the models of Ba${\check{z}}$ant and Kim and Eo.

The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate (인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kim, Do-Bin;Lee, Kyung-Su;Kim, Young-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • This study is to compare and analyze the physical and strength properties of lightweight concrete using domestic lightweight aggregate by replacement ratio of artificial lightweight fine and coarse aggregate after considering low cement mixture and pre-wetting time. The slump, unit weight, compressive strength and split tensile strength of lightweight concrete with domestic lightweight aggregate were measured. As test results, the slump of lightweight concrete by replacement ratio of lightweight fine aggregate increased as the replacement ratio of lightweight fine aggregate increased. The unit weight of lightweight concrete using 100% of lightweight fine aggregate was about 10.4% lower than that of the lightweight concrete with natural sand. In addition, the unit weight of lightweight concrete by replacement ratio of lightweight coarse aggregate increased with the increase of the ratio of LWG10(5~10mm). The compressive strength of lightweight concrete with lightweight fine and coarse aggregate increased as the replacement ratio of lightweight fine aggregate increased. The compressive strength of lightweight concrete with natural sand and LWG10 was 30 to 31MPa regardless of the replacement ratio of the lightweight coarse aggregate after 7 days.

A Proposal for Improving the Measurement and Management of Unit Water Content in In-Situ Concrete (현장 타설 콘크리트의 단위수량 측정 및 관리 개선 방안 제시)

  • Yun, Ja-yeon;Jang, Hyo-Jun;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.319-329
    • /
    • 2024
  • This study examined domestic and international regulations concerning concrete unit weight, along with an evaluation of unit weight in concrete poured on construction sites. Fluctuations in unit weight were observed to correlate with concrete quality issues such as material separation, bleeding, and latency. A word cloud analysis, centered on the concept of concrete quality, further highlighted the significant influence of unit weight. Comparative analysis between Korea and Japan revealed few substantial differences in unit weight management and measurement techniques. However, calculation of concrete unit weight at delivery, using the unit volume mass method, indicated considerable variability among random on-site samples. Notably, the unit weight often exceeded the recommended standard. These findings emphasize the necessity for strict adherence to unit weight standards by all stakeholders involved in concrete production and construction, including ready-mix concrete (REMICON) producers, construction firms, and inspectors. To ensure consistent quality of cast concrete on-site, the establishment of a more comprehensive and practical system is recommended, incorporating measures such as on-site inspections.

Strength Properties of Porous Concrete Containing Natural Fine Aggregate and Bottom Ash Aggregate (천연 잔골재와 바텀애시 골재를 활용한 다공성 콘크리트의 강도 특성)

  • Seung-Tae Jeong;Ji-Hun Park;In-Hwan Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.192-201
    • /
    • 2023
  • In this paper, the strength properties of porous concrete containing natural fine aggregates and bottom ash aggregates were investigated, The material properties of natural fine aggregates and bottom ash were identified then used as aggregates for porous concrete. The water-binder ratio was constant at 0.25, and the com paction level of 0.5, 1.5, and 2.5 MPa was applied to produce a porous concrete specimen. Test of unit weight, ultrasonic velocity, compressive strength, and flexural tensile strength were perform ed and analyzed. The unit weight, ultrasonic velocity, com pressive strength, and flexural tensile strength increased as the compaction level increased and also the replacement rate of bottom ash with sand(fine aggregate) increased. In addition, through regression analysis, the correlation between the unit weight, compressive strength, and flexural tensile strength of bottom ash porous concrete was presented. Unit weight and strength properties are proportional to each other and showed an increasing correlation. In addition, the correlation coefficient (R2) value of regression analysis was calculated based on the experimental results of this study and those of other research papers.

Comparison of Characteristics of Outflow Hydrograph Using the Linear and Nonlinear Muskingum-Cunge Methods (선형과 비선형 Muskingum-Cunge법에 의한 유출곡선의 특성 비교)

  • Kim, Jin-Su;Kim, Jin-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.417-426
    • /
    • 1999
  • A series of numerical experiments is performed to compare the characteristics of outflow hydrograph using linear and nonlinear Muskingum-Cunge methods for two cases: (a) sinusoidal inflow hydrographs and (b) rainfall inputs. The nonlinear method shows the steepening of the rising limb, coupled with a corresponding flattening of the receding limb. The linear method conserves mass exactly. In contrast, the nonlinear method is subject to a gain and a loss of mass. The loss of mass and the subsidence of peak outflow increases with a mild slope, a small baseflow $q_b$ and a large peak inflow to baseflow ratio $q_p/q_b$. A shock wave and associated numerical instability results in the increase of mass for a steep slope and a large $q_p/q_b$ ratio. While the linear method depends on the reference flow per unit-width, the nonlinear method depends on a baseflow and the $q_p/q_b$ ratio. It is found that, unlike for the sinusoidal inflow, the outflow for the rainfall inputs conserves mass fairly exactly in the nonlinear method.

  • PDF

Prediction of Fire Curves Considering the Relationship between Mass Increase and Combustion Time of Combustibles (연소물의 질량증가와 연소시간의 상관관계를 고려한 화재곡선 예측)

  • Eun-Joon Nam;Tae-Il Lee;Goang-Seup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In this paper, we aimed to convert the fire curve in volume units to a fire curve per unit area for application in the Fire Dynamic Simulator (FDS) surface heat release rate method. The fire curve was expressed dimensionlessly considering the total combustion characteristic time, and improvements were made to represent the appropriate ratios for the growth , steady, and decay phases concerning the fire intensity. Additionally, a correction function for combustion characteristic time varying with mass increase was derived. Also to control the growth time values according to the increase in mass, a function to correct the growth phase ratio was derived. Consequently, utilizing existing data, a formula was established to determine the reference mass for combustion materials and predict the fire curve based on mass increase.