• Title/Summary/Keyword: 단위신경망

Search Result 218, Processing Time 0.042 seconds

Energy contour control for Korean TTS using a NN learning (신경망 학습을 이용한 한국어 음성 합성기용 에너지 컨투어 제어)

  • 이정철;한민수;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.76-81
    • /
    • 1998
  • 문장의 에너지 컨투어 제어를 위한 방법을 제안한다. 제안된 모델은 음절을 기본단 위로 하며 다층 신경망을 이용하여 어절내 각 음절의 피크값을 추정한다. 그리고 신경망 입 력에 문장내 어절의 기능과 관련된 간접적인 피라미터를 수용함으로써 문장단위의 에너지 컨투어 생성을 가능하게 하였다. 본 추정기의 예측오차는 학습문장에 대해 10% 이내로서 높은 신뢰도를 보인다. 또한 이용함으로써 단어사전 없이 단어의 에너지 컨투어 추정을 가 능하게 하였으며, TTS에의 활용 가능성을 보였다.

  • PDF

Modeling of plasma etch process usuing neural network and wavelet (신경망과 웨이브렛을 이용한 플라즈마 식각공정 모델링)

  • Lee, Su-Jin;Kim, Byeong-Hwan;Yu, Im-Su;U, Bong-Ju
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.93-94
    • /
    • 2011
  • 플라즈마 감시를 위한 신경망 진단 모델을 개발한다. 이를 위해 광반사분광기, 웨이브릿, 주인자 분석, 그리고 신경망이 이용되었다. 플라즈마 식각공정데이터에 적용하여 비교 평가한 결과 모델의 예측성능이 식각특성, 분산비율, 그리고 웨이브릿의 종류에 따라 다름을 확인하였다. 개발된 모델은 웨이퍼 단위의 플라즈마 감시시스템의 개발에 응용될 수 있다.

  • PDF

Spike Feature Extraction for Emotion Recognition based on Deep Neural Network (심층 신경망 기반 감정 인식을 위한 스파이크 특성 추출 기술)

  • An, Soonho;Kim, Jaewon;Han, Seokhyeon;Shin, Seonghyeon;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.158-159
    • /
    • 2019
  • 본 논문에서는 심층 신경망을 기반으로 하는 감정 인식을 위해 스파이크 특성을 추출하는 기술을 제안한다. 기존의 심층 신경망을 이용한 감정 인식 기술은 대부분 MFCC를 특성 백터를 사용한다. 그러나 프레임 단위의 연산인 MFCC는 높은 시간 해상도를 확보하기 어려워 시간적 특성의 영향을 받는 감정 인식에 한계가 있다. 이를 해결하기 위해 본 논문에서는 인간의 청각 필터를 모델링한 ERB에 따라 샘플 단위로 주파수의 특성을 나타내는 스파이크그램을 이용한 감정 인식 기술을 제안한다. 제안하는 방법이 감정 인식의 대표적 특성인 MFCC보다 높은 인식률을 제공하는 것을 확인하였다.

  • PDF

Use of Neural Networks on Concrete Mix Design (콘크리트의 배합설계에 있어서 신경망의 이용)

  • 오주원;이종원;이인원
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.145-151
    • /
    • 1997
  • In concrete mix design we need the informations of the codes, the specifications, and the experiences of experts. However we can't consider all factors regarding concrete mix design. The final acceptance depends on concrete quality control test results. In this process we meet the uncertainties of materials. temperature, site environmental situations, personal skillfulness. and errors in calculations and testing process. Then the mix design adjustments must be made. Concrete mix design and adjustments arc somewhat complicated, time-consuming. and uncertain tasks. In this paper, as a tool to minimize the uncertainties and errors the neural network is applied to the concrete mix design. Input data to train and test the neural network are obtained numerically from the results of design following the concrete standard specifications of Korea. The 28-days compressive strengths which are variate according to the uncertainties and errors are considered. The results show that neural networks have a strong potential as a tool for concrete mix design.

Prediction of river water quality factor at Oncheoncheon Basin using RNN algorithm (RNN 알고리즘을 이용한 온천천의 하천수질 인자 예측)

  • Lim, Heesung;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.39-39
    • /
    • 2019
  • 인구의 도시 집중화로 인하여 다량의 생활용수의 사용에 따라 하천의 자정능력을 초과하여 오염을 유발시키고 있다. 이에 도시하천들의 오염은 점점 심해져 경제적으로 많은 문제를 유발하고 있다. 이러한 하천오염 문제를 과학적으로 대응하기 위해서는 오염물질의 농도 측정 및 데이터 축척을 통한 오염예측이 필수적이라 할 수 있으며, 부산광역시 보건환경정보 공개시스템에서는 하천수질 자동측정망을 설치하여 시간 단위로 오염물질을 측정하고 있다. 그러나 온천천의 하천수질 데이터는 계속 쌓여가고 있는데 이 데이터를 활용해서 하천수질 인자 예측이 거의 이뤄지지 않고 있다. 본 연구에서는 순환신경망 알고리즘을 활용하여 일 단위의 하천수질 인자 예측을 시도하였다. 순환신경망은 인공신경망의 발전된 형태인 시계열 학습에 강한 RNN, LSTM 알고리즘을 활용한 일단위 하천수질 인자 예측을 하고자 하였다. 연구에 앞서 시간 단위로 쌓여있는 데이터를 평균 내어 일 단위로 변경하였고 이 데이터를 가지고 일 단위 하천수질 인자 예측을 진행하였다. 연구에는 Google에서 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하여 DO, 탁도 등 항목을 예측하였다. 하천오염의 학습과 예측을 위해 대상지로는 부산지역 온천천의 부곡교, 세병교, 이섭교 관측소를 선택하였다. 연구를 위해 DO, 탁도 등 자료 수집은 부산광역시 보건환경정보 공개시스템의 자료를 활용하였다. 모형의 학습을 위해 입력자료로는 하천수질 인자 자료를 이용하였고, 자료의 학습에는 2014년~2017년 4년간의 자료를 학습자료로 사용하였고, 2018년 1년간의 자료는 모형의 검증을 위해 사용하였다. RNN, LSTM 알고리즘을 활용하여 분석 시 은닉층의 개수, 반복시행횟수, sequence length 등의 값을 조절하여 하천수질 인자 예측을 하였다. 모형의 검증을 위해 $R^2$(r square)와 RMSE(root mean square error)을 이용하여 통계분석을 실시하였다.

  • PDF

Sentimental Analysis using the Phoneme-level Embedding Model (음소 단위 임베딩 모형을 이용한 감성 분석)

  • Hyun, Kyeongseok;Choi, Woosung;Jung, Soon-young;Chung, Jaehwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.1030-1032
    • /
    • 2019
  • 형태소 분석을 통하여 한국어 문장을 형태소 단위의 임베딩 및 학습 관련 연구가 되었으나 최근 비정형적인 텍스트 데이터의 증가에 따라 음소 단위의 임베딩을 통한 신경망 학습에 대한 요구가 높아지고 있다. 본 논문은 비정형적인 텍스트 감성 분석 성능 향상을 위해 음소 단위의 토큰을 생성하고 이를 CNN 모형을 기반으로 다차원 임베딩을 수행하고 감성분석을 위하여 양방향 순환신경망 모델을 사용하여 유튜브의 비정형 텍스트를 학습시켰다. 그 결과 텍스트의 긍정 부정 판별에 있어 90%의 정확도를 보였다.

Dam Basin-scale Regionalization of Large-scale Model Output using the Artificial Neural Network (인공신경망모형을 이용한 대규모 대기모형모의결과의 댐유역스케일에서의 지역화기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-183
    • /
    • 2009
  • 본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.

  • PDF

Korean Phoneme Recognition Using Self-Organizing Feature Map (SOFM 신경회로망을 이용한 한국어 음소 인식)

  • 전용구
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.233-237
    • /
    • 1993
  • 본 논문에서는 패턴 매칭 방법에 근거하여 인식 단위가 음소인 음소 기반 인식 시스템을 구성하였다. 선택한 신경망 구조는 생물학적 신경망인 코호넨(T. Kohonen)의 SOFM(Self-Organizing Feature Map)으로 패턴 매칭 과정 중 cluster로 사용하였다. SOFM 신경망은 신호 공간에 대해서 최적의 국소(局所) 해부적 사사에 의한 자기 조직화 과정을 수행하며, 그 결과 인식 문제에 있어서 상당히 높은 정확도를 나타낸다. 따라서 SOFM 신경망은 음소 인식에도 효과적으로 응용될 수 있다. 또한 음소 인식 시스템의 성능 향상을 위해 K-means 클러스터링 알고리즘이 결합된 학습 알고리즘을 제안하였다. 제안된 음소 인식 시스템의 성능을 평가하기 위해, 먼저, 우리말 음소들을 모음, 파열음, 마찰음, 파찰음, 유음 및 비음, 종성의 6개 음소군으로 분류하고 각 음소군에 대한 특징 지도를 구성하여 labeler의 기능을 수행하게 하였다. 화자 종속 인식실험 결과 87.2%의 인식률을 보였으며 제안한 학습법의 빠른 수렴성과 인식률 향상을 확인하였다.

  • PDF

Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network (종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기)

  • Lee, Hyun Young;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.441-448
    • /
    • 2019
  • Previous researches on automatic spacing of Korean sentences has been researched to correct spacing errors by using n-gram based statistical techniques or morpheme analyzer to insert blanks in the word boundary. In this paper, we propose an end-to-end automatic word spacing by using deep neural network. Automatic word spacing problem could be defined as a tag classification problem in unit of syllable other than word. For contextual representation between syllables, Bi-LSTM encodes the dependency relationship between syllables into a fixed-length vector of continuous vector space using forward and backward LSTM cell. In order to conduct automatic word spacing of Korean sentences, after a fixed-length contextual vector by Bi-LSTM is classified into auto-spacing tag(B or I), the blank is inserted in the front of B tag. For tag classification method, we compose three types of classification neural networks. One is feedforward neural network, another is neural network language model and the other is linear-chain CRF. To compare our models, we measure the performance of automatic word spacing depending on the three of classification networks. linear-chain CRF of them used as classification neural network shows better performance than other models. We used KCC150 corpus as a training and testing data.

A Study on Speech Recognition using Recurrent Neural Networks (회귀신경망을 이용한 음성인식에 관한 연구)

  • 한학용;김주성;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.62-67
    • /
    • 1999
  • In this paper, we investigates a reliable model of the Predictive Recurrent Neural Network for the speech recognition. Predictive Neural Networks are modeled by syllable units. For the given input syllable, then a model which gives the minimum prediction error is taken as the recognition result. The Predictive Neural Network which has the structure of recurrent network was composed to give the dynamic feature of the speech pattern into the network. We have compared with the recognition ability of the Recurrent Network proposed by Elman and Jordan. ETRI's SAMDORI has been used for the speech DB. In order to find a reliable model of neural networks, the changes of two recognition rates were compared one another in conditions of: (1) changing prediction order and the number of hidden units: and (2) accumulating previous values with self-loop coefficient in its context. The result shows that the optimum prediction order, the number of hidden units, and self-loop coefficient have differently responded according to the structure of neural network used. However, in general, the Jordan's recurrent network shows relatively higher recognition rate than Elman's. The effects of recognition rate on the self-loop coefficient were variable according to the structures of neural network and their values.

  • PDF