• Title/Summary/Keyword: 단열 시트

Search Result 43, Processing Time 0.025 seconds

A Study on the domestic power plant roof waterproofing system & insulation efficiency (국내 발전소 지붕방수설계 시스템 및 단열 성능에 관한 연구)

  • Chung, Kwang-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • As the development of construction technology and new materials, building requirements has been varied gadually. Comfortable environment and serviceability of production activity and energy conservation are being dealt with very seriously. Recently localization of engineering technology of Power Plant, however, construction materials and domestic technology are being developed forcingly. According to above topics this thes is going to study roof waterproofing, thermal insulation and evaluate adiabatic performance and evaluation of properties of waterproofing materials and energy conservation. The results of studying and evaluating of roof waterproofing, thermal insulation and adiabatic performance of Power Plant are as follows. 1. Sheet waterproofing method is better than that of asphalt waterproofing method in that adaptability of wearhertight, thermal resistant, contraction and expansion. 2. It is required to replace polyurethane or ethylene used as thermal insulation with rock wool which is noncombustible materials. 3. It is recommended to usd outer insulation method than inner insulation method due to superioty of outer insulation method. Efficiency of insulation materials used in power plant is generally good except perlite mortar used in the power plant(YGN 1-2, GRI 1-2).

Temperature History of Slab Concrete Depending on Insulation Curing Method in Cold Weather Concreting (한중시공시 단열양생방법 변화에 따른 슬래브 콘크리트의 온도이력 특성)

  • Kim Jong-Back;Lim Choon-Goun;Park Koo-Byoung;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.17-20
    • /
    • 2005
  • This paper reported the temperature history of concrete placed at deck plate slab under cold climate condition by varying with surface insulating type. No curing sheet and simple insulation curing including non-woven fabric, double layer bubble sheet, the combination of double layer bubble sheet and non-woven fabric dropped temperature below zero within 24 hours, which caused frost damage at early age. On the other hand, the combination of double layer bubble sheet and non-woven fabric and double layer bubble sheet and styrofoam maintained minimum temperature above $4^{\circ}C\;and\;8^{\circ}C$, respectively. Based on core test results compressive strength of concrete with the combination of double layer bubble sheet and non-woven fabric and double layer bubble sheet and styrofoam was higher than those with other curing method due to good insulation effect.

  • PDF

Effects of Clearance on the Formation of Adiabatic Shear Band in Stepped Specimen (계단시편의 간극이 단열전단밴드의 형성에 미치는 영향)

  • Yoo, Y.H.;Jeon, G.Y.;Chung, D.T.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1700-1709
    • /
    • 1993
  • The stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element method. Three different clearance sizes are tested. The material model for the stepped specimen includes effects of strain hardening, strain rate hardening and thermal softening. It is found that the material inside the fully grown adiabatic shear band experiences three phase of deformation, (1) homogeneous deformation phase, (2) initiation/incubation phase, and (3) fast growth phase. The second phase of deformation is initiated after sudden shear stress drop which occurs at the same time regardless of the clearance size. The incubation time prior to fast growth phase increases, as the clearance size of the stepped specimen increases. Whereas, after incubation period, the growth rate of the adiabatic shear band decreases, as the clearance size decreases. It is also found that two adiabatic shear band may develop instead of one for the smaller clearance size.

Field Application of Surface Insulation Curing Method to Cold Weather Concreting (한중콘크리트의 현장 표면단열 양생공법 시공사례 연구)

  • Kim Jong-Back;Lim Choon-Goun;Han Min-Cheol;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • This study investigates the field application of surface insulation curing method, which combined double layer bubble sheet(DBS) and thick-curing-material(TCM) for cold weather concreting. According to the test, deck slab, curing only upper section with DBS and TCM, does not make big different temperature history with that, curing both upper and bottom section during daily average temperature 6.5t. It is concluded that combination of DBS and TCM in only upper section can be safely cured in early period of time during cold water concreting. The field test was carried out with this favourable data. The upper deck slab was insulated by combination of DBS and TCM, and the construction was surrounded by tent. in order to protect from outside wind. The test result shows that the lowest temperature of deck slab indicated 6$ ^{circ}C $. It demonstrated that this curing method can resist early frost and save construction cost in the side of management and saving labor cost, compared with previous method. In addition, the column specimen, combined both form and bubble board, exhibited favorable temperature history, due to internal hydration heat insulation effect.

  • PDF

Silica Aerogel Blanket Processing Technologies for Use as a Widespread Thermal Insulation Material (범용 단열재로 활용하기 위한 실리카 에어로젤 블랭킷의 처리 기술)

  • Jae-Wook Choi;Young Su Cho;Dong Jin Suh
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.237-243
    • /
    • 2023
  • Aerogel is the most excellent insulation material known to date, but it is inflexible and has very low strength. A blanket containing aerogel in a nonwoven fabric or fiber is currently the most practical form. However, aerogel blankets are not yet widely used because they cannot avoid dust generation when handled, lack flexibility, and can possibly deform. In this study, vacuum treatment, surface treatment, and composite materialization technology were applied to solve this problem, and some prototypes were also made. If an aerogel blanket is wrapped in an aluminum sheet, sealed at the four ends, and vacuumed, it can become a material with better insulation than the blanket itself. An aerogel molded body can be made by coating the aerogel blanket with resin and treating the surface. If the aerogel blanket is multi-packed and laminated with resin or fiber in multiple layers to make it a composite material, it can be used as a flexible insulation material. In particular, this composite material, which utilizes a Teflon membrane with controlled pores, is breathable and waterproof, so it can be used for clothing. Prototypes of insoles for winter boots and outdoor roll mats were also produced using aerogel blanket resin and fiber composites. These prototypes showed low thermal conductivity of less than 20 mW m-1K-1, with good flexibility and durability.

Effect of Chemical Foaming Process on the Cellular Structure Development and Correlation with the Mechanical and Physical Property of PBAT (화학적 발포 공정이 PBAT 발포 셀 구조 발달에 미치는 영향과 기계적, 물리적 특성과의 상관관계 연구)

  • Yeong ho Ji;Tae Hyeong Park;Ji Eun Choo;Sung Wook Hwang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.63-72
    • /
    • 2024
  • Poly (butylene adipate-co-terephthalate) (PBAT) is one of the representative biodegradable polymers with high ductility and processability to replace petroleum-based polymers. Many investigations have been conducted to broaden the applications of PBAT in a variety of industries, including the food packaging, agricultural mulching film, and logistics and distribution fields. Foaming process is widely known technique to generate the cell structure within the polymer matrix, offering the insulation and light weight properties. However, there was no commercially feasible foam product based on biodegradable polymers, especially PBAT, and maintaining a proper melt viscosity of the polymer would be a key parameter for the foaming process. In this study, chemical foaming agent and cross-linking agent were introduced to PBAT, and a compression molding process was applied to prepare a foam sheet. The correlation between cell morphological structures and mechanical and physical properties was evaluated. It was found that PBAT with foam structures effectively reduced the density and thermal conductivity, allowing them to be suitable for applications such as insulation and lightweight packaging or cushion materials.

Temperature History of Concrete at Cold Weather Depending on the Kinds of Insulating Sheet (단열양생시트 종류 변화에 따른 한중콘크리트의 온도이력)

  • Jeon, Chung-Keun;Kim, Jong;Shin, Dong-An;Oh, Seon-Kyo;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.618-621
    • /
    • 2006
  • This paper is to investigate temperature history of cold weather concrete depending on insulation curing sheet kinds. Insulating effect according to curing sheet is shown in order of 5 layer bubble sheet, combination of PE form and 3 layer bubble sheet and 3 layer bubble sheet. It maintained above $10^{\circ}C$ of minimum temperature until the completion of initial curing period when bubble curing sheet was supplied regardless of curing sheet kinds. Five layer bubble curing sheet secure higher curing temperature than any other curing sheet applied in this experiment by as much as $2{\sim}3^{\circ}C$, which performed remarkable insulation effect. Concrete applied with curing sheet secured above $65^{\circ}D{\cdot}D$ of maturity, at which concrete had 5MPa of compressive strength at 3 days.

  • PDF

Static Cyclic Loading Test of the Seismic and Energy Simultaneous Retrofit Panel for Existing Unreinforced Masonry Buildings (기존 비보강 조적조 건축물의 내진 및 에너지 동시보강패널 정적반복가력실험)

  • Choi, Hyoung-Wook;Lee, Sang-Ho;Choi, Hyoung-Suk;Kim, Tae-Hyeong;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • A textile and capillary tube composite panel(TCP) was developed to simultaneously retrofit the seismic performance and the energy efficiency (e.g. heating or insulation performance) of existing unreinforced masonry (URM) buildings. TCP is a light-weight mortar panel in which carbon textile reinforcements and capillary tubes are embedded. Textile reinforcements plays a role of seismic retrofit and capillary tubes that hot water circulates contribute to the energy retrofit. In this paper, the static cyclic loading tests were performed on the masonry walls with/without TCP to understand the seismic retrofit effect of TCP retrofit and the results were summarized. The results of the test showed that the TCP contributed to increase the capacity of the Shear strength and ductility of the URM walls. In addition, the deformation of the wall after cracking was substantially controlled by the carbon textile.

Characteristic of Temperature History of Slab concrete by the Change of Insulation Curing Material and Difference of Heated cable Power Capacity. (단열양생재 변화 및 열선 전력용량 차이에 따른 슬래브 콘크리트의 온도이력 특성)

  • Jung, Eun-Bong;Ahn, Sang-Ku;Jung, Sang-Hyun;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.334-336
    • /
    • 2013
  • In this study, the temperature history was evaluated for the improved bubble sheets combining hot wires and PE films, which were developed under the extreme environmental condition of -10℃ and applied on the top surface of slab to prevent initial damage by freezing. Results can be summarized as follows. If improved bubble sheets combining hot wires with different capacity on double and quadruple bubble sheets are used, the temperature history for all materials decreased to 2~3℃ below zero but all test materials except Type 1 secured the accumulative temperature of 45° D·D at 7 days of material age, required for the prevention of initial freezing damage. This indicates the bubble sheets can prevent the initial damage by freezing.

  • PDF

On-Line 지필 수축 측정 기법

  • 김순배;곽동수
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.54-54
    • /
    • 2001
  • 지필의 수축 현상은 섬유의 특성, Forming 공정에서 섬유배향Drying, 온도조건, Size P Press Y- Coating 공정 에서 Rewetting, 공정 중의 Tension, Draw등에 의 해 영 향을 받게 된다. 특히 Drying 공정에서는 지필 수분이 증발하면서 섬유의 자체 수축 및 섬유결합 부의 Micro compression이 발생하게 된다. 그리고 Draw, Canvas Tension, Cylinder 온도둥과 같은 공정 조건의 변동에 따라 지필 수축률의 차이가 발생하며 제품의 M MD/CD의 강도적 특성 및 칫수안정성 컬등의 품질과 상관성을 갖는다. 일반적으로 제 품의 신축률을 측정하는 일반적인 방법은 Reel 샘플을 일정시간 침수하여 종이 내부의 응력을 제거한 후 전후의 치수 차이를 비교하는 것이다. 그러나 이 방법을 통해서는 실 질적으로 Dryer 내부의 어느 단계에서 어느 정도의 수축이 발생하는지를 판단할 수는 없다. 본 연구는 Dryer에서 Reel 까지의 종이 수축 변화를 On - Line상에서 직접 측정한 적 용 사례와 공정 조건에 따른 지필 수축의 변화를 측정한 결과에 대한 것이다. 여기서 사용된 On-Line 지필 수축기는 직진성의 레이저를 이동식 지지대에 설치하여 전/후측 의 지필과 Cy linder 양끝의 거리 차이를 측정하여 지필의 폭을 계산할 수 있도록 자체 개발하였다. 이 설비를 이용하여 Dryer 내부에서 지필 수축이 급격이 일어나는 C Cylinder 군을 찾아 스팀압력과 Bel Run의 진공도, Canvas Tension, Draw 공정조건을 조정하였고 결과적으로 제품의 신축률 개선 효과를 가져올 수 있었다. 본 연구에서 개발한 On-Line 지필 수축 측정 기법은 종이 칫수 안정성과 관련하여 향후 공정 최적화 작업의 진단 도구로서 적극적으로 활용할 수 있을 것으로 기대된다.었다. 특히 지분의 경우, 참여한 회사의 지분관련 complain이 약 80% 정도 감소하는 결과를 나타 내었다. 또한 백상지의 경우 ink jet 프린터에 많이 사용됨으로 ink jet 프린터의 인쇄 적성을 image analyzer로 측정한 결과 산화전분 보다 향상된 결과를 나타내었다. 있다 고 사료되었다.칼비터에 의한 고해나 큰 물성적으로 큰 차이를 보이지는 않고 있 었다. 단지 섬유의 차이가 고해방식의 차이보다 월등히 크다는 사실을 보이고 있다 이러한 점은 섬유장의 길이에서도 볼 수 있다. 칼비터가 섬유를 절단하기만 하고 닥방망이 고해가 섬유장의 변화를 일으키지 않는다면 틀림없이 평균 섬유장의 차이가 생길것이다.의 여수도가 7 70% 이상 개선되는 것으로 나타났다.측정하였다. 또한 카르복실기 정량과 종이의 pH 측정 및 X -ray Diffractometer를 이용하여 결정화도를 측정하였다. 본 연구의 결과, 시간의 경과에 따라서 탄소의 결합에너지는 분포가 C-H에서 COO-, 또는 C=O로 달라짐으로써 종 이가 산화되고 있다는 것을 알 수 있었다. 또한 이 결합에너지 분포의 변화가 펄프의 종류 에 따라서 다르게 이동함으로써 제조된 시트의 표면 산화반응이 서로 다르게 일어나고 있음 을 알 수 있었으며, 이는 사용한 펄프의 화학 조성분의 차이에 기인한 것이라 사료된다.>NW 단열군이 연구지역 내에서 지하수 유동성이 가장 높은 단열군으로 추정된다. 이러한 사실은 3개 시추공을 대상으로 실시한 시추공 내 물리검층과 정압주입시험에서도 확인된다.. It was resulted from increase of weight of single cocoon. "Manta"2.5ppm produced 22.2kg of cocoon. It is equal to 9% increase in index, as compared to that of control.

  • PDF