• Title/Summary/Keyword: 단열밀도

Search Result 53, Processing Time 0.029 seconds

Cellular Anatomy of Compression Wood and Opposite Wood in a Branch of Taxodium distichum Rich. (낙우송(落羽松)(Taxodium distichum Rich.) 지재(枝材)의 압축이상재(壓縮理想材) 및 대응재(對應材)에 관한 해부학적(解剖學的) 특성(特性))

  • Lee, Phil Woo;Chung, Youn Jib;Kwon, Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.3
    • /
    • pp.296-302
    • /
    • 1991
  • Compression wood and opposite wood formed in a branch of Taxodium distichum Rich. is described and compared in qualitative and quantitative anatomical aspects. The qualitative features of compression wood appeared to differ from those of opposite wood in very gradual tracheid transition from earlywood to latewood, roundish tracheid shape on cross surface, tracheid tip distortion on radial surface, and existence of intercellular spaces and helical cavities. In quantitative features, compression wood tracheids showed shorter lengths than opposite wood. The ray density and the number of uniseriate rays were greater in compression wood than in opposite wood but the height of uniseriate rays in compression wood was smaller than in opposite wood.

  • PDF

Fracture Characteristics and Segmentation of Yangsan Fault around Mt. Namsan, Gyeongju City, Korea (경주 남산 일대의 단열구조 특성과 양산단층의 분절)

  • Kim, Heon-Joo;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.51-61
    • /
    • 2009
  • Fractures and segmentation in association with the activities of the Yangsan fault are studied around Mt. Namsan, Gyengju city in the southeastern part of Korea. It is believed that the higher values of joint density and fractal dimension with the approach of the center of the Yangsan fault mean intense fracturing due to the fault activity. The boundary between fault damage zone and host rock is inferred to be placed at about 2.7 km from the center of the Yangsan fault where the values of joint density and fractal dimension abruptly decrease and the orientations of joint are also much dispersed. The small faults within the damage zone of the Yangsan fault are definitely divided into right-lateral and left-lateral strike-slip faults. The former is considered to be formed during the right-lateral movement of the Yangsan fault and the latter during the left-lateral movement. The Yangsan fault is segmented in the study area with obvious evidences as follows: (1) the difference of fault strike between northern and southern segments, (2) The geometry of contractional imbricate fans and syncline plunging $9^{\circ}$, $S85^{\circ}E$ at the end of northern segment, and (3) anticline plunging $28^{\circ}$, $N4^{\circ}W$ at the end of southern segment.

A Study on the Combustion Characteristics of Organic Insulation Materials According to the Gas Toxicity Evaluation Method (가스유해성 평가방법에 따른 유기단열재의 연소특성에 관한 연구)

  • Shim, Ji-Hun;Lee, Jae-Geol;Han, Kyoung-Ho;Kim, Ju-Wan;Song, Seok-Hun;Jo, Hyung-Won;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.519-524
    • /
    • 2022
  • Domestic building finishing materials are being evaluated according to KS F 2271 standards according to the notification of the Ministry of Land, Infrastructure and Transport, and this test is evaluated using laboratory animals. In this study, experiments were conducted on highly combustible organic insulation materials such as EPS, urethane, and phenolic foam. The purpose of this study was to analyze the cause of the behavioral suspension of the experimental mice by measuring the average behavioral suspension time of the mice caused by the harmful gas generated when these three types of insulation materials were burned. FTIR analysis and smoke density experiment were performed as a cause analysis method for the behavioral suspension of mice, and the experimental results were analyzed by dividing the causes of behavioral suspension into suffocation by particulate matter and toxic inhalation by gaseous substances. As a result of the test, urethane was evaluated as the most harmful insulation material, and as a result of FTIR analysis and smoke density test as a cause analysis for the gas toxicity test results, it is judged that the behavioral stop of the rats by suffocation is higher than the effect of toxic inhalation. This study is a basic study on the cause analysis of harmful gases, and it will be necessary to prepare the toxicity basis and analyze various materials and gases.

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass II - Estimation of rise time - (암반에 전달된 밀장전 발파입력의 획률론적 예측 II - 최대압력 도달시간 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Sang-Gyun;Lee, Sang-Don;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.25-40
    • /
    • 2004
  • The supersonic shock wave generated by fully coupled explosion will change into subsonic shock wave, plastic wave, and elastic wave consecutively as the wave propagates through rock mass. While the estimation of the blast-induced peak pressure was the main aim of the companion paper, this paper will concentrate on the estimation of the rise time of blast-induced pressure. The rise time can be expressed as a function of explosive density, isentropic exponent, detonation velocity, exponential coefficient of the peak pressure attenuation, dynamic yield stress, plastic wave velocity, elastic wave velocity, rock density, Hugoniot parameters, etc. Parametric analysis was performed to pinpoint the most influential parameter that affects the rise time and it was found that rock properties are more sensitive than explosive properties. The probabilistic distribution of the rise time is evaluated by the Rosenblueth'S point estimate method from the probabilistic distributions of explosive properties and rock properties. Numerical analysis was performed to figure out the effect of rock properties and explosive properties on the uncertainty of blast-induced vibration. Uncertainty analysis showed that uncertainty of rock properties constitutes the main portion of blast-induced vibration uncertainty rather than that of explosive properties. Numerical analysis also showed that the loading rate, which is the ratio of the peak blasting pressure to the rise time, is the main influential factor on blast-induced vibration. The loading rate is again more influenced by rock properties than by explosive properties.

  • PDF

Principal Study of Korean Oak Woods for Utilization with Whisky Aging Barrel (국산 참나무속 수종의 위스키 원액 저장용 목통으로의 활용성 평가)

  • 김남훈;황원중;최인화
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.43-50
    • /
    • 2002
  • This paper describes experimental results on the utilization of some Korean oak woods for whisky aging barrel. Some anatomical characteristics as vessel diameter, ray spacing, ray height, existence of tyloses, water absorption and color change of alcohol during immersing of wood samples were examined. The oak woods used in this study were ring-porous. The type of ray was a compound ray consisted of uniseriate ray and broad ray. The ray parenchyma cells were almost procumbent, tyloses were presented in white oak(Quercus aliena, Quercus variabilis, Quercus dentata, Quercus mongolica), but absented in red oak(Quercus rubura). Density of wood samples decreased during immersing in alcohol. Alcohol color in Quercus dentata and Quercus aliena presented more darker than other samples. Water absorption of sapwoods was higher than that of heartwoods. Especially, red oak showed more higher water absorption than white oak. Consequently, Korean white oak woods can be used as the whisky aging barrel.

  • PDF

A Study on the Preparation of Lightweight Materials with Sewage Sludge Ash (하수(下水)슬러지 소각재(燒却滓)를 사용한 경량재료(輕量材料) 제조연구(製造硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.30-36
    • /
    • 2008
  • The preparation of porous lightweight materials as well as the measurement of physical properties has been performed by using SSA(sewage sludge ash) as the raw material. For this aim, two types of lightweight filler, that is, perlite and silica sphere were employed respectively and bentonite was also used as an inorganic binder. The properties of lightweight specimen calcined at 1,000 were measured in terms of density, compressive strength, thermal conductivity and sound absorption to examine the effect of material composition as well as the preparation condition on the properties of lightweight material. As a result, the density of specimen prepared with perlite was ranged from 1.23 to $1.37g/cm^3$ and the compressive strength was ranged from 242.3 to $370.5kg/cm^2$. In case of specimen prepared with silica sphere, it was found that the compressive strength was less than $100kg/cm^2$ even though density was lower than that of specimen with perlite. As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to $0.5W/m^{\circ}K$ depending on material composition so that the insulation effect was superior to conventional concrete.

Development and Performance Evaluation of Non-flammable Mineral Foam Board Using Waste Glass (폐유리를 활용한 불연 무기물 발포 보드 개발 및 성능평가)

  • Kim, Hyen-Soo;Choi, Won-Young;Kim, Sang-Heon;Choi, Seung-Hwan;Park, Soon-Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • In this study, non-flammable mineral foam board using waste glass that can be produced to standardized specifications were developed and evaluated for the performance. In addition to the physical and mechanical performance, the environmental properties such as insulation, non-combustibility, gas hazard, sound absorption, etc. were tested to verify the use as interior and exterior building materials. Through the structural review, the validity was verified for the application of the office and restaurant building.

Natural convection heat transfer from a hot body in the square enclosure with different boundary conditions (다른 경계조건을 갖는 밀폐공간 내에 존재하는 고온부로부터의 자연대류 열전달)

  • 권순석;정태현;권용일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2395-2406
    • /
    • 1992
  • Laminar natural convection heat transfer from a hot body in a square enclosure has been studied for various center positions of a hot body at Grashof number Gr=1.5$\times$10/sup 5/, Prandtl number Pr=0.71 and dimensionless thermal conductivity K/sub s//K/sub f/= 14710. In case of vertical cold walls, the natural convection at the dimensionless center position of a hot body, X/sub c/Y/sub c/=0.2, 0.5 shows the most strong and at X/sub c/, Y/sub c/=0.5, 0.8 the most weak. In case of horizontal cold walls, the natural convection at the dimensionless center position of a hot body ; X/sub c/ Y/sub c/=0.5, 0.2 shows the most strong and at X/sub c/, Y/sub c/=0.2, 0.5 the most weak.

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass I - Estimation of peak blasting pressure - (암반에 전달된 밀장전 발파압력의 확률론적 예측 I - 최대 발파압력 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.337-348
    • /
    • 2003
  • The propagation mechanism of a detonation pressure with fully coupled charge is clarified and the blasting pressure propagated in rock mass is derived from the application of shock wave theory. The blasting pressure was a function of detonation velocity, isentropic exponent, explosive density, Hugoniot parameters, and rock density. Probabilistic distribution is obtained by using explosion tests on emulsion and rock property tests on granite in Seoul and then the probabilistic distribution of the blasting pressure is derived from the above mentioned properties. The probabilistic distributions of explosive properties and rock properties show a normal distribution so that the blasting pressure propagated in rock can be also regarded as a normal distribution. Parametric analysis was performed to pinpoint the most influential parameter that affects the blasting pressure and it was found that the detonation velocity is the most sensitive parameter. Moreover, uncertainty analysis was performed to figure out the effect of each parameter uncertainty on the uncertainty of blasting pressure. Its result showed that uncertainty of natural rock properties constitutes the main portion of blasting pressure uncertainty rather than that of explosive properties. In other words, since rock property uncertainty is much larger than detonation velocity uncertainty the blasting pressure uncertainty is more influenced by the former than by the latter even though the detonation velocity is found to be the most influencing parameter on the blasting pressure.

  • PDF

Evaluation of thermal stress of poultry according to stocking densities using mumerical BES model (BES 수치모델을 이용한 사육 밀도별 가금류 고온 스트레스 평가)

  • Kwon, Kyeong-seok;Ha, Tahwan;Choi, Hee-chul;Kim, Jong-bok;Lee, Jun-yeob;Jeon, Jung-hwan;Yang, Ka-young;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sang-yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.456-463
    • /
    • 2019
  • Micro climatic conditions within the livestock facility are affected by various factors such as ventilation, cooling, heating, insulation and latent and sensible heat generation from animals. In this study, numerical BES method was used to simulate energy flow inside the poultry house. Based on the BES method and THI concept, degree of thermal stress of poultry was evaluated according to the locations in South Korea. Comparison of THI values within the poultry house was also carried out according to the stocking densities to reflect recent animal-welfare issue. Significant decrease in thermal stress of poultry was observed when the stocking density of $30kg/m^2$ was applied in the change of the seasons(p<0.05) however, there was no statistically significant difference in summer season(p>0.05). It meant that installation of proper cooling system is urgently needed. For Iksan city of Jeollabuk-do province, total 252 hours of profit for thermal stress was found according to decrease in the stocking density.