• Title/Summary/Keyword: 단면 2차 모멘트

Search Result 62, Processing Time 0.026 seconds

Compressive Strength of Horizontal Joints in Precast Concrete Large Panel System (대형 콘크리트 패널구조 수평접합부의 지지력 성능에 관한 연구)

  • 서수연;정봉오;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.138-147
    • /
    • 1994
  • The compressive strength of horizontal joints in precast concrete large panel structures depends on parameters such as grout and panel strength, detail of joint, joint moment, width of grout column, and etc. 44 specimens were tested to investigate the effects of parameters that influence the compressive strength of horizontal joints. The design formula specified in Korean Cock for compression horizontal joints must be reviewed, because it was based on the test results of the joint types not used in Korea. In this study comparing the test results, there fore, the validity of the design formulas was evaluated and a suitable formula was proposed to predict the ultimate strengths of compression horizontal joints. The increase of ultimate strengths was not observed, even if confined the horizontal displacement of slabs and reinforced the wall edge, when the grout strength is lower than panel strength. From the comparison of test results and those by the proposed formula, it was shown that proposed formula was suitable to predict the ultimate compressive strength of horizontal joints.

Simple Model for Preliminary Design of Hexagrid Tall Building Structure (헥사그리드 고층건물구조의 예비설계를 위한 단순모델)

  • Lee, Han-Ul;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • High-rise building shapes are changing from orthogonal to irregular form and the current trend is to arrange members in geometric grid-patterns at the perimeter of buildings. This study proposes a simple model for the preliminary design of a hexagrid high-rise building. The size of the cross section is set to be different at each module and hexagrid unit, which is different from the previous studies in which all hexagrid members were the same. To examine the effect of hexagrid size on structural performance, 60-story hexagrid buildings with 1-, 2- and 4-story high modules are designed and analyzed. Maximum lateral displacement, steel tonnage, load carrying percentage of perimeter frame and combined strength ratio are compared for 15 buildings. As the lateral load carrying capacity of hexagrid structure was inferior to a diagrid structural system, proper lateral stiffness should be allocated to the core frame in a hexagrid structure. The best ratio of flexural to shear deformation was 4 and larger unit size was better in considering constructional cost and structural efficiency. As the maximum lateral displacements of the buildings were within 84%~108% of the limit, the proposed method seems to be applicable to preliminary design of hexagrid buildings.

Effect of Cross Beams on Live Load Distribution in Rolled H-beam Bridges (압연형강(H형강) 거더교의 가로보가 활하중 횡분배에 미치는 영향)

  • Yoon, Dong Yong;Eun, Sung Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, the effects of cross beams on the lateral distribution of live loads in composite rolled H-beam girder bridges, were investigated through three-dimensional finite element analysis. The parameters considered in this study were the inertial moment ratio between the main girder and the cross beam, the presence of the cross beam, and the number of cross beams. The live load lateral distribution factors were investigated through finite element analysis and the customary grid method. The results show that there was no difference between the bridge models with and without a cross beam. The cross beam of the beam and frame types also showed almost the same live load lateral distribution factors. However, the finite element analysis showed that the concrete slab deck plays a major role in the lateral distribution of a live load, and consequently, the effect of the cross beam is not so insignificant that it can be neglected.

Numerical Analysis of Shear Stresses in Framed Tube Structures with Internal Tube(s) (내부튜브가 있는 골조 튜브 구조물의 전단응력에 대한 수치해석)

  • Lee, Kang-Kun;Lee, Lee-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.511-521
    • /
    • 2002
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures arc analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis of shear stress is based on the mathematical analogy in conjunction with the elastic theory By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of lineal functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. Previous studies for axial stresses and shear lag phenomenon are further developed lot the numerical analysis of shear stresses in the tubes. The simplicity and accuracy of the proposed method are demonstrated through the solutions of throe numerical examples.

Risk Assessment for a Steel Arch Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 강재아치교의 위험성평가)

  • Cho, Tae-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of an Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses lot this relatively small probability of failure of the complex structure, which is hard to be calculated by Monte-Carlo Simulations or by First Order Second Moment method that can not easily calculate the derivative terms in implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is modeled as a parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts, compared with the previous permutation method or conventional system reliability analysis method.

Optimum Design of Two Hinged Steel Arches with I Sectional Type (SUMT법(法)에 의(依)한 2골절(滑節) I형(形) 강재(鋼材) 아치의 최적설계(最適設計))

  • Jung, Young Chae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.65-79
    • /
    • 1992
  • This study is concerned with the optimal design of two hinged steel arches with I cross sectional type and aimed at the exact analysis of the arches and the safe and economic design of structure. The analyzing method of arches which introduces the finite difference method considering the displacements of structure in analyzing process is used to eliminate the error of analysis and to determine the sectional force of structure. The optimizing problems of arches formulate with the objective functions and the constraints which take the sectional dimensions(B, D, $t_f$, $t_w$) as the design variables. The object functions are formulated as the total weight of arch and the constraints are derived by using the criteria with respect to the working stress, the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge and including the economic depth constraint of the I sectional type, the upper limit dimension of the depth of web and the lower limit dimension of the breadth of flange. The SUMT method using the modified Newton Raphson direction method is introduced to solve the formulated nonlinear programming problems which developed in this study and tested out throught the numerical examples. The developed optimal design programming of arch is tested out and examined throught the numerical examples for the various arches. And their results are compared and analyzed to examine the possibility of optimization, the applicablity, the convergency of this algorithm and with the results of numerical examples using the reference(30). The correlative equations between the optimal sectional areas and inertia moments are introduced from the various numerical optimal design results in this study.

  • PDF

A Study on Reliability Based Design Criteria for Reinforced Concrete Bridge Superstructures (철근(鐵筋)콘크리트 도로교(道路橋) 상부구조(上部構造) 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.87-99
    • /
    • 1982
  • This study proposes a reliability based design criteria for the R.C. superstructures of highway bridges. Uncertainties associated with the resistance of T or rectangular sections are investigated, and a set of appropriate uncertainties associated with the bridge dead and traffic live loads are proposed by reflecting our level of practice. Major 2nd moment reliability analysis and design theories including both Cornell's MFOSM(Mean First Order 2nd Moment) Methods and Lind-Hasofer's AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Ellingwood's algorithm and an approximate log-normal type reliability formula are well suited for the proposed reliability study. A target reliability index (${\beta}_0=3.5$) is selected as an optimal value considering our practice based on the calibration with the current R.C. bridge design safety provisions. A set of load and resistance factors is derived by the proposed uncertainties and the methods corresponding to the target reliability. Furthermore, a set of nominal safety factors and allowable stresses are proposed for the current W.S.D. design provisions. It may be asserted that the proposed L.R.F.D. reliability based design criteria for the R.C. highway bridges may have to be incorporated into the current R.C. bridge design codes as a design provision corresponding to the U.S.D. provisions of the current R.C. design code.

  • PDF

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.

Evaluation of In-plane Buckling and Ultimate Strength for Braced Arch Ribs (브레이스트 아치 리브의 면내 좌굴 및 극한강도 평가)

  • Park, Yong Myung;Heo, Taek Young;Lee, Pil Goo;Noh, Kyeung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.759-768
    • /
    • 2004
  • The parametric analysis of vertically braced steel pipe arch ribs was performed to evaluate their in-plane buckling strengths and ultimate load-carrying capacities. The elastic and plastic behavior of braced arch ribs, unlike those of the usual single arch ribs, are affected by such factors as the flexural rigidity of the brace member, brace and pipe ribs spacing, loading situation, and arch curvature. To analyze these effects, several parameters were included, such as the rise-to-span ratio, the second moment of the inertia ratio of the rib to the brace member, the space ratio of the brace, the space ratio of the upper and lower ribs, the initial crookedness, the slenderness ratios of the braced arch ribs, and the loading conditions were considered with live-load-to-dead-load ratios. Based on the results of the parametric analyses, a proper profile of the braced arch rib was proposed. A large-scale structural experiment was also performed to evaluate the ultimate strength of the braced arch rib. The test results were determined to reasonably coincide with the analytical ones.

Structural Performance and Usability of Void Slab Established in T-deck Plate (T형 데크 플레이트 중공형 슬래브의 구조성능 및 사용성능)

  • Hong, Eun-Ae;Chung, Lan;Paik, In-Kwan;Yun, Sung-Ho;Cho, Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • In recent years, extension of life span of buildings is becoming an important issue in our society. To improve the life span of buildings, rhamen structure construction and long-spanned structures are advantageous. And in order to achieve this goal, structural elements of buildings must be light and slender. As an alternative method, general porous slabs are used frequently domestically and internationally. But the study on the porous slabs using T-deck plate and assembly of light weight precast construction is insufficient at present. In this study, flexural and fatigue tests were performed on six specimens to verify structural performance and serviceability. The main parameters of the specimens were light weight and T-deck plate construction possibility as well as slab thickness. The test results indicated that the strength of porous slabs using T-deck plate and assembly of light weight were much better than general RC slabs and porous slabs without T-deck plate. And stiffness was much better than that of other tested slabs.