• Title/Summary/Keyword: 다 물체 동역학

Search Result 336, Processing Time 0.032 seconds

Hybrid Control of Aircraft Landing Gear using Magnetorheological Damper (MR댐퍼를 적용한 항공기 착륙장치의 하이브리드 제어기법 연구)

  • Tak, Jun Mo;Viet, Luong Quoc;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, a hybrid control method that adjusts for the existing force control technique has been presented for consideration. The proposed hybrid control technique does away with the chattering phenomenon occurring in existing force control technique and provides high shock absorption efficiency. In order to design the controller for the landing gear with MR damper, the equation of motion of the landing gear was derived. The hybrid controller was designed after constructing a simulation model using Recur-Dyne, multi-body dynamic analysis software. The hybrid controller can reduce the maximum strut force and displacement based on the skyhook controller, and is able to get the high efficiency by making it work for the additional force control technique. In addition, an effective switching control technique and input shaping technique was applied to prevent the chattering in the drop simulation. Finally, the performance of the landing characteristics was evaluated throughout the various drop simulations.

Minimization of the Bending Deflection of the Human-powered Aircraft Wing Induced by Change of an Incidence Angle (인간동력항공기의 붙임각 변화에 따른 날개 끝단 굽힘변위 최소화 연구)

  • Lee, Chang-Bae;Im, Byeong-Uk;Joo, Hyun-Shik;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.98-106
    • /
    • 2019
  • Human-powered aircraft has wings with a shape of high aspect ratio which results in large bending displacement. This paper aims to improve the structural limitation by changing an incidence angle of the wings. The tendency change of bending displacement at the wing tip is observed assuming that airfoil and cross-sectional shape of the wing is fixed, and amount of the total lift generated is satisfied. Quasi-steady lift, drag and the aerodynamic moment are distributed with regard to sections of the wing. Those are analyzed using a numerical nonlinear lifting-line method and 'geometrically exact beam' (GEB) program in EDISON. 'Variational Asymptotic Beam Sectional Analysis' (VABS) program is used to check if the present wing is structurally solid. Furthermore, the predicted tip deflections are verified by comparing with DYMORE.

Flexible Multi-body Dynamic Analysis for Reducer-integrated Motor of Autofilter (오토필터의 감속기 일체형 모터에 관한 유연 다물체 동역학 해석)

  • J.K. Kim;B.D. Kim;G.S. Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.311-317
    • /
    • 2023
  • An autofilter is a device that removes impurities contained in heavy fuel oil used in diesel engines of ships or power plants, and also automatically removes impurities accumulated in the filter through a reverse washing function. The reducer-integrated motor serves to rotate the filter at low speed to enable reverse automatic cleaning in the autofilter device. To achieve a low speed of 0.65 to 0.75 rpm in a reducer-integrated motor, a small motor that can operate at 97rpm at a rated voltage of 110 V and 112.5 rpm at 220 V is required. Additionally, a large gear ratio of 1/150 is required. To ensure the durability and reliability of these reducers, the strength of the gear must be evaluated at the design stage. In general, there is a limit to evaluating the stress and strain state according to the vibration characteristics acting on each gear in the driving state of the reducer through quasi-static analysis. Therefore, in this study, the operation characteristics of the auto filter's reducer-integrated motor were first analyzed using the rigid body dynamics analysis method. Then, this rigid body dynamics analysis model was extended to a flexible multibody dynamics analysis model to analyze the stress and strain states acting on each gear and evaluate the design feasibility of the gear.

A Study on the Multibody Dynamics Simulation-based Dynamic Safety Analysis of Machinery for Installation and Operation of USBL in Unmanned Vessel (무인선 USBL의 설치 및 운용을 위한 기계시스템의 다물체 동역학 시뮬레이션 기반 동적 안전성 검토에 관한 연구)

  • Jaewon Oh;Hyung-Woo Kim;Jong-Su Choi;Bong-Huan Jun;Seong-Soon Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.943-951
    • /
    • 2024
  • This paper considers the simulation-based installation and operation safety analysis of installation and operation machinery of USBL as underwater equipment in operation environments. The simulation model of this mechanical system was developed using flexible multibody dynamics simulation technology. Operation and environmental conditions were applied using dynamic forces model considering ocean environments. The developed simulation model was used to evaluate operation safety through eigenvalue analysis, dynamic forces analysis, and structural analysis. As the analysis results, the operation safety was very low in extreme operation condition due to increase of dynamic loads by VIV effect. It was not a problem because safety factor had more than 2.0 in this case. However, the operation safety should be further strengthened because the USBL and LARS was installed and utilized in unmanned vessel with automatic controls. In order to improve safety by avoiding VIV frequency, we redesigned the USBL pole.

A Study on Design Optimization of an Axle Spring for Multi-axis Stiffness (다중 축 강성을 위한 축상 스프링 최적설계 연구)

  • Hwang, In-Kyeong;Hur, Hyun-Moo;Kim, Myeong-Jun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2017
  • The primary suspension system of a railway vehicle restrains the wheelset and the bogie, which greatly affects the dynamic characteristics of the vehicle depending on the stiffness in each direction. In order to improve the dynamic characteristics, different stiffness in each direction is required. However, designing different stiffness in each direction is difficult in the case of a general suspension device. To address this, in this paper, an optimization technique is applied to design different stiffness in each direction by using a conical rubber spring. The optimization is performed by using target and analysis RMS values. Lastly, the final model is proposed by complementing the shape of the weak part of the model. An actual model is developed and the reliability of the optimization model is proved on the basis of a deviation average of about 7.7% compared to the target stiffness through a static load test. In addition, the stiffness value is applied to a multibody dynamics model to analyze the stability and curve performance. The critical speed of the improved model was 190km/h, which was faster than the maximum speed of 110km/h. In addition, the steering performance is improved by 34% compared with the conventional model.

A Study on Program Development for Static Design Factor of Automotive Suspension System (자동차 현가장치의 정적설계인자 계산을 위한 프로그램 개발에 관한 연구)

  • Kim, Kwang-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.283-289
    • /
    • 2017
  • In this study, a general program has been developed to calculate the static design factor of a vehicle suspension system. The partial derivatives of Jacobians for constraint equations are calculated using the symbolic technique. In the commercial program, finite difference method is used to calculate the Jacobian matrix of Jacobian. But in this study, it is calculated by using the symbol calculation method to precisely consider it. The calculated Jacobian matrix for the system has proved its accuracy through the solution of the numerical example. A simulation was performed for a double wishbone suspension of a 1/4 vehicle. The result can be used to calculate the static design factor of the suspension, and also add a convergence module that can perform virtual tests.

Analysis of Dynamic Interaction Between Maglev Vehicle and Guideway (자기부상열차/가이드웨이 동적상호작용 해석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1559-1565
    • /
    • 2013
  • This study aims to investigate the dynamic interaction characteristics between Maglev vehicles and an elevated guideway. A more detailed model for the dynamic interaction of the vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on prototyping, flexible guideway by a modal superposition method, and levitation electromagnets including the feedback controller into an integrated model. The proposed model was applied to an urban transit Maglev developed for a commercial application to analyze the dynamic response of the vehicle and guideway, and the effect of the surface roughness of the rail, mid-span guideway deflections, and air gap variations are then investigated from the numerical simulation.

Design and simulation of hydraulic system for launch vehicle holding device (우주발사체 지상고정장치 유압시스템 설계 및 해석)

  • Kim, Dae Rae;Yang, Seong Pil;Lee, Jaejun;Kim, Bum Suk;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1087-1094
    • /
    • 2016
  • The responsibility of the vehicle holding device (VHD) is to hold the launch vehicle while it is stayed on launch pad and release the holding mechanism to allow a lift-off of launch vehicle at a moment of lift-off. During a release of the holding mechanism, in order to prevent the Ka doing a doing a doing mode which is vertical oscillation of entire liquid propellant and very severe for vehicle structure, gradual release of holding force is required. Also, a release operation of all 4 VHD should be synchronized very precisely. In this study, to comply the "gradual release and synchronized operation requirement", concept of VHD hydraulic system using an accumulator, pyro valve and orifice to control speed of hydraulic cylinder is proposed instead of using complicated hydraulic components. Then through multi-body dynamic analysis and computational hydraulic analysis, a size of orifice to meet a target speed of hydraulic cylinder is calculated. Through this study, simple and reliable VHD hydraulic system complying requirements is designed.

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

Lightweight Design of a Vertical Articulated Robot Using Topology Optimization (위상최적화를 이용한 수직 다관절 로봇의 경량 설계)

  • Hong, Seong Ki;Hong, Jung Ki;Kim, Tae Hyun;Park, Jin Kyun;Kim, Sang Hyun;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1683-1688
    • /
    • 2012
  • Topology optimization is applied for the lightweight design of three main parts of a vertical articulated robot: a base frame, a lower and a upper frame. Design domains for optimization are set as large solid regions that completely embrace the original parts, which are discretized by using three-dimensional solid elements. Design variables are parameterized one-to-one to the material properties of each element by using the SIMP method. The objective of optimization is set as the multi-objective form combining the natural frequencies and mean compliances of a structure for which load steps of interest are selected from the multibody dynamics analysis of a robot. The obtained results of topology optimization are post-processed to designs favorable to manufacturability for casting process. The final optimized results are 11.0% (base frame), 12.0% (lower frame) and 10.0% (upper frame) lighter with similar or even higher static and dynamic stiffnesses than the original models.