• Title/Summary/Keyword: 다해상도 웨이블렛 분석

Search Result 11, Processing Time 0.02 seconds

The Method for Face Recognition using Wavelet Coefficients and Hidden Markov Model (웨이블렛 계수와 Hidden Markov Model를 이용한 얼굴인식 기법)

  • 이경아;이대종;박장환;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.162-165
    • /
    • 2003
  • 본 논문에서는 웨이블렛 계수와 Hidden Markov Model(HMM)이용한 얼굴인식 알고리즘을 제안한다. 입력 영상은 이산웨이블렛을 기반으로 한 다해상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 해상도에서 얻어진 웨이블렛 계수를 특징벡터로 사용하여 HMM의 모델을 생성한다. 인식단계 에서는 웨이블렛 변환에 의해 생성된 개별대역의 인식값을 더하여 상호 보완함으로써 인식률을 높일 수 있었다. 제안된 알고리즘의 타당성을 검증하기 위하여 기본적 알고리즘인 벡터 양자화(VQ) 기법을 적용한 경우와 기존 얼굴인식에 제안된 DCT-HMM을 이용한 기법과의 인식률 비교를 한 결과, 제안된 방법이 우수한 성능을 보임을 알 수 있었다.

  • PDF

Image Mosaic using Multiresolution Wavelet Analysis (다해상도 웨이블렛 분석 기법을 이용한 영상 모자이크)

  • Yang, In-Tae;Oh, Myung-Jin;Lee, In-Yeub
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.61-66
    • /
    • 2004
  • By the advent of the high-resolution Satellite imagery, there are increasing needs in image mosaicking technology which can be applied to various application fields such as GIS(Geographic Information system). To mosaic images, various methods such as image matching and histogram modification are needed. In this study, automated image mosaicking is performed using image matching method based on the multi-resolution wavelet analysis(MWA). Specifically, both area based and feature based matching method are embedded in the multi-resolution wavelet analysis to construct seam line.; seam points are extracted then polygon clipping method are applied to define overlapped area of two adjoining images. Before mosaicking, radiometric correction is proceeded by using histogram matching method. As a result, mosaicking area is automatically extracted by using polygon clipping method. Also, seamless image is acquired using multi-resolution wavelet analysis.

  • PDF

Face Recognition Using Wavelet Coefficients and Hidden Markov Model (웨이블렛 계수와 Hidden Markov Model을 이용한 얼굴인식 기법)

  • Lee, Kyung-Ah;Lee, Dae-Jong;Park, Jang-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.673-678
    • /
    • 2003
  • In this paper, we proposes a method for face recognition using HMM(hidden Markov model) and wavelet coefficients First, input images are compressed by using the multi-resolution analysis based on the discrete wavelet transform. And then, the wavelet coefficients obtained from each subband are used as feature vectors to construct the HMMs. In the recognition stage, we obtained higher recognition rate by summing of each recognition rate of wavelet subband. The usefulness of the proposed method was shown by comparing with conventional VQ and DCT-HMM ones. The experimental results show that the proposed method is more satisfactory than previous ones.

Face Recognition using Wavelet transform and LDA (웨이블렛 변환과 LDA를 이용한 얼굴인식)

  • 민준오;고현주;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.185-188
    • /
    • 2003
  • 본 논문은 복합적인 상황을 고려한 데이터를 이용하여 얼굴인식을 하는 연구로서, 이산 웨이블렛을 기반으로 하는 다 해상도 분석 방법을 사용하고, 각 해상도로 분해된 영상 중, 스케일 함수에 의해 사영되어진 영역에 LDA(Linear Discriminant Analysis)를 적용하여, 도출된 결과가 기존의 방법들에 비해 더 안정된 성능을 나타냄을 보이고자 한다. 이를 위해, 웨이블렛을 적용하지 않은 이미지에 PCA, LDA, ICA를 이용한 결과와 웨이블렛을 적용한 이미지에 통계적 방법들을 이용한 경우, 그리고 웨이블렛의 각 대역에 통계적인 방법을 적용한 후, 대수적인 합을 하였을 때의 인식율을 학습과 검증의 이미지배열을 바꾸어 가며 총 열여덟회 실험하였다. 이에, 본 논문에서 제안한 방법이 이미지 배열에 영향을 덜 받는 안정적인 성능을 가지고 있음을 확인 할 수 있었다.

  • PDF

An Emotion Recognition Method using Facial Expression and Speech Signal (얼굴표정과 음성을 이용한 감정인식)

  • 고현주;이대종;전명근
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.799-807
    • /
    • 2004
  • In this paper, we deal with an emotion recognition method using facial images and speech signal. Six basic human emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. Emotion recognition using the facial expression is performed by using a multi-resolution analysis based on the discrete wavelet transform. And then, the feature vectors are extracted from the linear discriminant analysis method. On the other hand, the emotion recognition from speech signal method has a structure of performing the recognition algorithm independently for each wavelet subband and then the final recognition is obtained from a multi-decision making scheme.

Korea Information Science Society (유전자 알고리즘을 이용한 홍채 특징 추출)

  • 원현석;손병준;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.826-828
    • /
    • 2004
  • 홍채인식 시스템은 영상획득, 전처리, 특징 추출, 패턴 정합의 단계로 이루어져 있다. 이 중 특징 추출은 특징 차원의 감소뿐만 아니라 분류 정착도의 증가를 위한 필수적인 과정이다. 본 논문에서는 특징을 추출하는데 있어서, 홍채데이타에 웨이블렛 변환의 다해상도 분석 기법을 시도하여 일정 영역을 추출한 후, 그 영역에 유전자 알고리즘(Genetic Algorithm)을 적용하여 가장 분별력 있는 특징들만을 추출 및 사용하는 홍채인식 시스템을 제안한다. 유전자 알고리즘의 선택연산자로는 적응도 비례 방식과 전역 엘리트 방식을 사용하였으며, 적합도 함수로는 Gaussian Kernel을 사용하는 Support Vector Machine(SVM)을 사용하였다. 본 시스템을 통해 나온 최적의 특징집합을 이용한 SVM분류기로 인식률을 알아본 결과 웨이블렛만을 사용했을 때 보다 대략 1.5%정도 더 좋은 인식률을 얻을 수 있었다.

  • PDF

Face Emotion Recognition by Fusion Model based on Static and Dynamic Image (정지영상과 동영상의 융합모델에 의한 얼굴 감정인식)

  • Lee Dae-Jong;Lee Kyong-Ah;Go Hyoun-Joo;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.573-580
    • /
    • 2005
  • In this paper, we propose an emotion recognition using static and dynamic facial images to effectively design human interface. The proposed method is constructed by HMM(Hidden Markov Model), PCA(Principal Component) and wavelet transform. Facial database consists of six basic human emotions including happiness, sadness, anger, surprise, fear and dislike which have been known as common emotions regardless of nation and culture. Emotion recognition in the static images is performed by using the discrete wavelet. Here, the feature vectors are extracted by using PCA. Emotion recognition in the dynamic images is performed by using the wavelet transform and PCA. And then, those are modeled by the HMM. Finally, we obtained better performance result from merging the recognition results for the static images and dynamic images.

A study on the implementation of identification system using facial multi-feature (얼굴의 다중특징을 이용한 인증 시스템 구현)

  • 정택준;문용선;박병석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.448-451
    • /
    • 2002
  • This study will offer multi-feature recognition instead of an using mono-feature to improve the accuracy of recognition. Each Feature can be found by following ways. For a face, the feature is calculated by the principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out on equation to calculate the edges of the lips first. Then the other feature is calculated by the distance ratio of facial parameters. We've sorted backpropagation neural network and experimented with the inputs used above and then based on the experimental results we discuss the advantage and efficiency.

  • PDF

Wavelet Based Face Recognition using Selective LDA and ICA Fusion (웨이블릿 기반 LDA와 ICA의 선택적 융합에 의한 얼굴인식)

  • Min, Jun-Oh;Go, Hyoun-Joo;Chun, Myung-Geun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05c
    • /
    • pp.2065-2068
    • /
    • 2003
  • 본 논문은 복합적인 상황을 고려한 데이터를 이용하여 얼굴인식을 하는 연구로서, 이산 웨이블렛을 기반으로 하는 다 해상도 분석 방법을 사용하고, 각 해상도에서 얻어진 계수를 이용하여 LDA와 ICA기법을 융합하는 방법을 제안한다. 기존의 얼굴인식방법은 정면에서 바라본 임의의 얼굴영상을 이용하므로, 예상하지 못한 얼굴 로션 변화에 대한 고려와 빛의 변화에 대해 고려하지 못했었다. 그러나, 본 연구에서는 다양한 상황을 고려한 데이터를 취득하여 해상도 별로 분리된 대역에 FLD와 ICA를 선택적으로 융합한 알고리즘을 적용하므로서 인식율을 높일 수 있었다

  • PDF

Emotion Recognition of Korean and Japanese using Facial Images (얼굴영상을 이용한 한국인과 일본인의 감정 인식 비교)

  • Lee, Dae-Jong;Ahn, Ui-Sook;Park, Jang-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.197-203
    • /
    • 2005
  • In this paper, we propose an emotion recognition using facial Images to effectively design human interface. Facial database consists of six basic human emotions including happiness, sadness, anger, surprise, fear and dislike which have been known as common emotions regardless of nation and culture. Emotion recognition for the facial images is performed after applying the discrete wavelet. Here, the feature vectors are extracted from the PCA and LDA. Experimental results show that human emotions such as happiness, sadness, and anger has better performance than surprise, fear and dislike. Expecially, Japanese shows lower performance for the dislike emotion. Generally, the recognition rates for Korean have higher values than Japanese cases.