• Title/Summary/Keyword: 다항 회귀

Search Result 190, Processing Time 0.024 seconds

Improving Polynomial Regression Using Principal Components Regression With the Example of the Numerical Inversion of Probability Generating Function (주성분회귀분석을 활용한 다항회귀분석 성능개선: PGF 수치역변환 사례를 중심으로)

  • Yang, Won Seok;Park, Hyun-Min
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.475-481
    • /
    • 2015
  • We use polynomial regression instead of linear regression if there is a nonlinear relation between a dependent variable and independent variables in a regression analysis. The performance of polynomial regression, however, may deteriorate because of the correlation caused by the power terms of independent variables. We present a polynomial regression model for the numerical inversion of PGF and show that polynomial regression results in the deterioration of the estimation of the coefficients. We apply principal components regression to the polynomial regression model and show that principal components regression dramatically improves the performance of the parameter estimation.

Selection of extra support points for polynomial regression (다항회귀모형에서의 추가받힘점 선택)

  • Kim, Young-Il;Jang, Dae-Heung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1491-1498
    • /
    • 2014
  • The major criticism of optimal experimental design is that it depends heavily on the model and its accompanying assumption that often leads the number of support points equal to the number of parameters in the model. Often in the past, a polynomial model of higher degree is assumed to handle the experimental design for the polynomial regression of lower degree. In this paper we searched the possible set of designs which are robust to the departure of the assumed model. The designs are categorized with respect to D-efficiency. The approach by O'Brien (1995) was discussed in univariate polynomial regression model setting.

An Application of Response Surface Experiments to Control the Quality of Industrial Products : Model Fitting and Prediction of Responses (공업제품의 질을 관리하기 위한 반응표면 실험의 응용 - 통계적 모형 적합과 반응의 예측을 중심으로 -)

  • Park, Seong-Hyeon
    • Journal of Korean Society for Quality Management
    • /
    • v.6 no.1
    • /
    • pp.14-17
    • /
    • 1978
  • In response surface experiments, a polynomial regression model is often used to fit the response surface to explore the functional relationship between a response variable and several independent variables, and to determine the optimum operating conditions, which would be desirable to control the quality of industrial products. The problem considered in this paper is that of selecting subsets of polynomial terms from a given polynomial model so as to achieve "improved" response surfaces in estimation of the response. Such improvement in fitting the response surfaces would be very helpful to determine the optimum operating conditions and to explore the functional relationship with better precision. A criterion is proposed for selection of polynomial terms and illustrated with an industrial example.

  • PDF

Development of a Technique for Estimating Ground Water Level Using Daily Precipitation Data (일강우자료를 활용한 지하수위 예측기법 개발)

  • Park, Jae-Hyeon;Choi, Young-Sun;Park, Chang-Kun;Yang, Jung-Suk;Booh, Seong-An
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.189-193
    • /
    • 2006
  • 대체용수원의 개발이 시급하게 대두되어지고 있는 가운데 제한된 수자원을 보다 효과적으로 사용하기 위한 하나의 방법으로 지하댐(Groundwater Dam) 건설을 이용한 지하수 자원의 개발이 하나의 방법으로 제안되었다. 하지만 해안지역에 설치된 지하댐을 운영할 경우 지하수위 변동에 따른 염수의 침입을 고려하여 운영하여야 한다. 특히 갈수시는 지하수위 하강이 강하게 나타나는 시기로 지하수위는 지하댐 최적운영을 위한 중요한 지표가 된다. 특히 강우량 자료를 활용한 가뭄지수와 지하수위의 관계를 설명 할 수 있다면 예상 강우자료를 활용한 장래의 지하수위를 예측 할 수 있으며 이것은 지하댐 운영에 매우 효과적으로 활용 할 수 있을 것이다. 본 연구에서는 기존의 강우와 예상 강우 자료를 활용하여 지하수위 예측기법을 개발하였다. 과거 강수량의 일이동 평균값을 바탕으로 한 다항 회귀모델을 수립하여, 계절적 특성을 고려한 구간을 분리하여 적용하였다. 예측된 지하수위의 정확성을 알아보기 위해 관측된 지하수위와 예측된 지하수위를 비교 분석하였다. 분석 결과 단순회귀기법을 지하수위를 예측한 경우 $0.62{\sim}0.63$의 상관계수를 보인반면 다항회귀기법을 적용한 결과 $0.62{\sim}0.84$로 상관계수가 증가하였다. 대체적으로 관측된 지하수위와 예측된 지하수위는 비슷한 경향을 보였다. 따라서 지하댐 운영에 있어 최적의 취수량을 개발하기위해 일강우자료를 활용한 지하수위 예측기법의 활용성은 매우 높은 것으로 판단된다.

  • PDF

Adaptation and Implementation of Polynomial Regression Function for Estimating Moving Object's Trajectory (이동객체의 경로 추정을 위한 다항회귀함수 적용 및 구현)

  • Yang, Eun-Joo;Jung, Young-Jin;Jang, Seong-Youn;Ahn, Yoon-Ae;Ryu, Keun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.109-112
    • /
    • 2001
  • 실세계의 움직이는 여러 이동객체들은 시공간적인 특성을 지니고 있다. 이들 객체는 실세계의 공간 즉, 점들의 집합 내에 위치해 있으며 이들을 데이터베이스로 표현 및 관리하기 위해서는 점 흑은 영역 형태로 표현하고 저장하게 된다. 이 논문에서는 샘플링되지 않은 시점에 대한 이동객체의 위치 질의시 발생할 수 있는 이동객체의 불확실성을 처리하는 데 있어서, 기존의 선형 보간법 대신 이동객체의 위치값 자체의 오차범위까지 고려하는 다항회함수(polynomial regression function)을 이용한 이동객체의 불확실한 이동위치 추정 방법을 제시하였으며, 이동객체의 이동경로를 구현하였다. 다항회귀모형을 이용할 경우 선형 보간법 보다 추정된 위치간에 대한 오차를 줄일 수 있으며, 이동객체의 과거 및 미래 위치값을 사용자에게 반환해 줄 수 있는 장점을 가진다.

  • PDF

Estimating Moving Object`s Uncertain Position using Polynomial Regression Function (다항회귀함수를 이용한 이동객체의 불확실한 위치 추정)

  • 양은주;안윤애;오인배;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.310-312
    • /
    • 2001
  • 샘플링되지 않은 불확실한 이동객체의 위치값을 추정하기 위한 기존의 연구방범 중 가장 보편적으로 사용하고 있는 방법은 선형 보간법이다. 선형 보간법을 사용할 경우 샘플링 구간은 좁게하여 오차를 줄일 수 있고 계산 시간을 단축할 수 있지만, 연속적인 이동객체의 경로는 직선이라기 보다는 곡선으로 나타내어지므로 샘플링되지 않은 이동객체의 위치값에 대해 불확실한 위치정보를 사용자에게 반환하게 된다. 따라서 이 논문에서는 샘플링된 이동객체의 위치값에 오차가 없다는 가정하에서 모든 위치점을 지나는 보간 다항식을 구해서 처리하는 선형 보간법 대신 이동객체의 위치값 자체의 오차범위까지 고려하는 다항회귀모형(polynomial regression model)을 이용한 이동객체의 불확실한 이동위치 추정방법을 제시한다. 다항회지모형은 이용할 경우 선형 보간법 보다 추정된 위치값에 대한 오차를 줄일 수 있으며, 이동객체의 과거 및 미래 위치값을 사용자에게 반환해 줄 수 있는 장점을 가진다.

  • PDF

Correction of Erroneous Individual Vehicle Speed Data Using Locally Weighted Regression (LWR) (국소가중다항회귀분석을 이용한 이상치제거 및 자료보정기법 개발 (GPS를 이용한 개별차량 주행속도를 중심으로))

  • Im, Hui-Seop;O, Cheol;Park, Jun-Hyeong;Lee, Geon-U
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.47-56
    • /
    • 2009
  • Effective detection and correction of outliers of raw traffic data collected from the field is of keen interest because reliable traffic information is highly dependent on the quality of raw data. Global positioning system (GPS) based traffic surveillance systems are capable of producing individual vehicle speeds that are invaluable for various traffic management and information strategies. This study proposed a locally weighted regression (LWR) based filtering method for individual vehicle speed data. An important feature of this study was to propose a technique to generate synthetic outliers for more systematic evaluation of the proposed method. It was identified by performance evaluations that the proposed LWR-based method outperformed an exponential smoothing. The proposed method is expected to be effectively utilized for filtering out raw individual vehicle speed data.

Comparison of Goodness-of-Fit Tests using Grouping Strategies for Multinomial Logit Regression Model (다항 로짓 회귀모형에서의 그룹화 전략을 이용한 적합도 검정 방법 비교)

  • Song, Mi Kyung;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.889-902
    • /
    • 2013
  • Several goodness-of-fit test statistics have been proposed for a multinomial logit regression model; however, the properties of the proposed tests were not adequately studied. This paper evaluates three different goodness-of-fit tests using grouping strategies, proposed by Fagerland et al. (2008), Bull (1994), and Pigeon and Heyse (1999). In addition, Pearson (1900)'s method is also examined as a reference. Simulation studies were conducted to evaluate the four methods in terms of null distribution and power. A real data example is presented to illustrate the methods.

On variable bandwidth Kernel Regression Estimation (변수평활량을 이용한 커널회귀함수 추정)

  • Seog, Kyung-Ha;Chung, Sung-Suk;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.179-188
    • /
    • 1998
  • Local polynomial regression estimation is the most popular one among kernel type regression estimator. In local polynomial regression function esimation bandwidth selection is crucial problem like the kernel estimation. When the regression curve has complicated structure variable bandwidth selection will be appropriate. In this paper, we propose a variable bandwidth selection method fully data driven. We will choose the bandwdith by selecting minimising estiamted MSE which is estimated by the pilot bandwidth study via croos-validation method. Monte carlo simulation was conducted in order to show the superiority of proposed bandwidth selection method.

  • PDF

A Machine Learning System for Laundry Drying Time Prediction (빨래 건조시간 예측을 위한 기계학습 시스템)

  • Sagong, Hoon;Nam, Seong Ho;Yun, Seungwon;Park, Jang Su;You, Wonsang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.91-93
    • /
    • 2022
  • 빨래 건조대는 국내에서 빨래 건조를 위해 주로 사용되지만, 건조 알림 기능이 없어 빨래 건조기에 비하여 사용상의 불편함이 따른다. 본 연구에서는 다항회귀(polynomial regression) 기계학습 모델을 사용하여 빨래 건조시간 예측이 가능한 스마트 빨래 건조 알림 시스템을 제안하였다. 제안된 다항회귀 알고리즘은 빨래 건조대에 부착된 수분센서로부터 측정된 수분량 데이터로부터 옷감 종류에 따른 빨래 건조 시간을 예측하는데 선형회귀보다 높은 정확도를 보였다(면 97.5>95.3%, 합성섬유 94.8>92.8%).