Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.12a
/
pp.233-236
/
2000
본 연구에서는 패턴 인식용 다층 퍼셉트론 신경망을 순수 디지털 논리회로 모델로 전환 구현할 수 있도록 새로운 논리뉴런의 구조, 디지털 정형 다층논리신경망 구조, 그리고 패턴인식의 응용을 위한 다단 다층논리 신경망 구조를 제안하고, 또한 제안된 구조는 매우 단순하면서도 효과적인 증가적인 가법적(Incremental Additive) 학습알고리즘이 존재함을 보였다.
본고에서는 최근 활발하게 연구되고 있는 심층 학습에 대하여 알아본다. 기계 학습 분야 중 하나인 심층 학습은 인공 신경망의 한 형태인 심층 신경망을 통해 구현된다. 심층 신경망은 기존 다층 신경망의 구조와 거의 유사한 학습 구조를 가지지만, 학습 과정에서 발생하는 부정확한 학습 문제를 해결함으로써 최근의 성공을 이끌어낼 수 있었다. 본고에서는 다층 신경망이 가지고 있던 문제점들을 심층 신경망에서 어떻게 극복하였는지 심층 신경망의 발전 과정을 통해 알아보고, 기계 학습의 기본개념을 바탕으로 이를 설명하여 비전문가들의 이해를 돕고자 하였다.
Proceedings of the Korean Nuclear Society Conference
/
1995.05b
/
pp.1011-1016
/
1995
구조물의 미지구조계수를 추정하기 위한 방법으로 신경망이론을 사용하였다. 다층퍼셉트론과 Gaussian Basis function Network의 장점을 살리기 위해, 복합신경망을 제안하였으며, 제안된 신경망이 학습시 수렴속도가 향상되고, 적절한 분할확대의 수를 결정하면 일반화 성능도 유지할 수 있음을 확인하였다. 적단건물모형에 대하여 구조계수추정의 절차를 설명하였으며, 제안된 신경망의 효율성을 보였다.
Journal of the Institute of Convergence Signal Processing
/
v.2
no.2
/
pp.111-118
/
2001
In this paper, in order to implement the multi-layered perceptron neural network using pure digital logic circuit model, we propose the new logic neuron structure, the digital canonical multi-layered logic neural network structure, and the multi-stage multi-layered logic neural network structure for pattern recognition applications. And we show that the proposed approach provides an incremental additive learning algorithm, which is very simple and effective.
Kim, Young-Sang;Joo, No-Ah;Park, Hyun-Il;Park, Sol-Ji
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.3C
/
pp.115-125
/
2009
The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by insitu test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.374-378
/
1998
신경망은 복잡하게 나타나는 비선형성을 가지는 실제의 다양한 문제들에 적용이 가능할 뿐만 아니라, 정보들이 가중치에 분산되어 저장됨으로서 강인성을 가지고 있다. 그러나 전방향 다층 신경망 구조를 학습할 수 있는 역전파 알고리즘은 초기 가중치의 영향에 의하여 학습된 결과가 지역 최소점에 빠지기 쉬운 경향이 있다. 본 논문에서는 이러한 문제점을 해결하기 위한 한가지 방법으로서 유전자 알고리즘을 이용하여 전방향 다층 신경망의 가중치를 학습하여, 지역 최소점에 빠지지 않고 학습이 이루어짐을 보인다.
Proceedings of the Korean Statistical Society Conference
/
2000.11a
/
pp.17-22
/
2000
시계열 자료를 분석할 때 쉽게 접근하는 통계적 방법은 ARMA 모형이며 신경망 학습 방법 중에서는 다층 퍼셉트론에서의 Back-propagation 알고리즘이 일반적이다. Back-propagation을 비롯한 신경망 학습의 구조는 자료의 특성에 따라 경험적으로 결정하는 것으로 알려져 있다. 그러나 바로 이 점이 신경망 학습방법의 이용을 어렵게 하는 요인이기도 하다. 본 연구는 ARMA 모형 중 몇 개 유형의 자료에 대하여 Back-propagation 알고리즘을 적용함에 있어 어떠한 구조로 학습하는 것이 효율적인가를 입력층과 은닉층의 크기, 활성화 함수를 중심으로 검토하였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2003.05a
/
pp.469-473
/
2003
다층 구조 신경망에서 널리 사용되는 오류 역전파 알고리즘은 초기 가중치와 불충분한 은닉층의 노드수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ARTI에서 경계 변수의 설정에 따라 인식률이 저하되는 문제점을 개선하기 위하여 ARTI과 Max-Min 신경망을 결합한 퍼지 다층 퍼셉트론을 제안한다. 제안된 자가 생성을 이용한 퍼지 다층 퍼셉트론은 입력층에서 은닉층으로 노드를 생성시키는 방식은 ARTI을 적용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과, 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.
Proceedings of the Korean Society of Precision Engineering Conference
/
1996.04a
/
pp.536-540
/
1996
경험과 학습을 바탕으로 새로운 상황에 대처하는 인간의 신경계에서의 신경세포들의 상호작용을 규명하는 일은 많은 과학자들을 매료시켜 왔다. 이와 함께, 생물학적인 신경계를 닮은 인공적인 신경망을 구축하여 감지하고, 인식하고, 구별하고, 판단하는 일에 이용하고자 하는 노력도 끊임없이 진행되어 왔다. 인공 신경망의 구성은 전적으로 많은 경우의 수에 대한 테스트에 의존하게 되는 데, 이 경우 시간도 대단히 많이 소요 될 뿐더러 체계적으로 가장 좋아 보이는 신경망 모델에 도달하였는 지도 확실치 않다. 따라서 , 본 논문에서는 실험계획법을 다층 퍼셉트론 신경망의구조설계에 적용하여 적은 실험횟수로 적합한 신경망 모델을 구성할 수 있음을 검증하고, 실제사례에 적용하여 그 유용성을 제시하고자 한다.
Journal of the Institute of Convergence Signal Processing
/
v.6
no.1
/
pp.45-52
/
2005
Dynamic neural networks have been applied to diverse fields requiring temporal signal processing. This paper describes system identification using the hybrid neural network, composed of locally(LRNN) and globally recurrent neural networks(GRNN) to improve dynamics of multilayered recurrent networks(RNN). The structure of the hybrid nework combines IIR-MLP as LRNN and Elman RNN as GRNN. The hybrid network is evaluated in linear and nonlinear system identification, and compared with Elman RNN and IIR-MLP networks for the relative comparison of its performance. Simulation results show that the hybrid network performs better with respect to the convergence and accuracy, indicating that it can be a more effective network than conventional multilayered recurrent networks in system identification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.