• Title/Summary/Keyword: 다층 신경망 구조

Search Result 114, Processing Time 0.032 seconds

A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition (패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구)

  • 박영석
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.233-236
    • /
    • 2000
  • 본 연구에서는 패턴 인식용 다층 퍼셉트론 신경망을 순수 디지털 논리회로 모델로 전환 구현할 수 있도록 새로운 논리뉴런의 구조, 디지털 정형 다층논리신경망 구조, 그리고 패턴인식의 응용을 위한 다단 다층논리 신경망 구조를 제안하고, 또한 제안된 구조는 매우 단순하면서도 효과적인 증가적인 가법적(Incremental Additive) 학습알고리즘이 존재함을 보였다.

  • PDF

심층 신경망의 발전 과정과 이해

  • Lee, Jae-Seong
    • Information and Communications Magazine
    • /
    • v.33 no.10
    • /
    • pp.40-48
    • /
    • 2016
  • 본고에서는 최근 활발하게 연구되고 있는 심층 학습에 대하여 알아본다. 기계 학습 분야 중 하나인 심층 학습은 인공 신경망의 한 형태인 심층 신경망을 통해 구현된다. 심층 신경망은 기존 다층 신경망의 구조와 거의 유사한 학습 구조를 가지지만, 학습 과정에서 발생하는 부정확한 학습 문제를 해결함으로써 최근의 성공을 이끌어낼 수 있었다. 본고에서는 다층 신경망이 가지고 있던 문제점들을 심층 신경망에서 어떻게 극복하였는지 심층 신경망의 발전 과정을 통해 알아보고, 기계 학습의 기본개념을 바탕으로 이를 설명하여 비전문가들의 이해를 돕고자 하였다.

신경망 기법을 사용한 구조계의 미지계수추정

  • 방은영;윤정방
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.1011-1016
    • /
    • 1995
  • 구조물의 미지구조계수를 추정하기 위한 방법으로 신경망이론을 사용하였다. 다층퍼셉트론과 Gaussian Basis function Network의 장점을 살리기 위해, 복합신경망을 제안하였으며, 제안된 신경망이 학습시 수렴속도가 향상되고, 적절한 분할확대의 수를 결정하면 일반화 성능도 유지할 수 있음을 확인하였다. 적단건물모형에 대하여 구조계수추정의 절차를 설명하였으며, 제안된 신경망의 효율성을 보였다.

  • PDF

A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition (패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구)

  • 박영석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • In this paper, in order to implement the multi-layered perceptron neural network using pure digital logic circuit model, we propose the new logic neuron structure, the digital canonical multi-layered logic neural network structure, and the multi-stage multi-layered logic neural network structure for pattern recognition applications. And we show that the proposed approach provides an incremental additive learning algorithm, which is very simple and effective.

  • PDF

Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선)

  • Kim, Young-Sang;Joo, No-Ah;Park, Hyun-Il;Park, Sol-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.115-125
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by insitu test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

Neural Network Weight Optimization using the GA (GA를 이용한 신경망의 가중치 최적화)

  • 문상우;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.374-378
    • /
    • 1998
  • 신경망은 복잡하게 나타나는 비선형성을 가지는 실제의 다양한 문제들에 적용이 가능할 뿐만 아니라, 정보들이 가중치에 분산되어 저장됨으로서 강인성을 가지고 있다. 그러나 전방향 다층 신경망 구조를 학습할 수 있는 역전파 알고리즘은 초기 가중치의 영향에 의하여 학습된 결과가 지역 최소점에 빠지기 쉬운 경향이 있다. 본 논문에서는 이러한 문제점을 해결하기 위한 한가지 방법으로서 유전자 알고리즘을 이용하여 전방향 다층 신경망의 가중치를 학습하여, 지역 최소점에 빠지지 않고 학습이 이루어짐을 보인다.

  • PDF

A Study on Construction of Back-propagation Architecture for ARMA data (ARMA 데이터에 대한 Back-propagation 신경망의 구조)

  • 김나영;김희영
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.17-22
    • /
    • 2000
  • 시계열 자료를 분석할 때 쉽게 접근하는 통계적 방법은 ARMA 모형이며 신경망 학습 방법 중에서는 다층 퍼셉트론에서의 Back-propagation 알고리즘이 일반적이다. Back-propagation을 비롯한 신경망 학습의 구조는 자료의 특성에 따라 경험적으로 결정하는 것으로 알려져 있다. 그러나 바로 이 점이 신경망 학습방법의 이용을 어렵게 하는 요인이기도 하다. 본 연구는 ARMA 모형 중 몇 개 유형의 자료에 대하여 Back-propagation 알고리즘을 적용함에 있어 어떠한 구조로 학습하는 것이 효율적인가를 입력층과 은닉층의 크기, 활성화 함수를 중심으로 검토하였다.

  • PDF

Fuzzy Multilayer Perceptron by Using Self-Generation (자가 생성을 이용한 퍼지 다층 퍼셉트론)

  • 백인호;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.469-473
    • /
    • 2003
  • 다층 구조 신경망에서 널리 사용되는 오류 역전파 알고리즘은 초기 가중치와 불충분한 은닉층의 노드수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ARTI에서 경계 변수의 설정에 따라 인식률이 저하되는 문제점을 개선하기 위하여 ARTI과 Max-Min 신경망을 결합한 퍼지 다층 퍼셉트론을 제안한다. 제안된 자가 생성을 이용한 퍼지 다층 퍼셉트론은 입력층에서 은닉층으로 노드를 생성시키는 방식은 ARTI을 적용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과, 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.

  • PDF

실험계획법을 이용한 다층 퍼셉트론 인공 신경망의 구조 설계

  • Lee, Seok-Ho;Kang, Dae-Cheon;Lee, Chan;Kang, Mu-Jin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.536-540
    • /
    • 1996
  • 경험과 학습을 바탕으로 새로운 상황에 대처하는 인간의 신경계에서의 신경세포들의 상호작용을 규명하는 일은 많은 과학자들을 매료시켜 왔다. 이와 함께, 생물학적인 신경계를 닮은 인공적인 신경망을 구축하여 감지하고, 인식하고, 구별하고, 판단하는 일에 이용하고자 하는 노력도 끊임없이 진행되어 왔다. 인공 신경망의 구성은 전적으로 많은 경우의 수에 대한 테스트에 의존하게 되는 데, 이 경우 시간도 대단히 많이 소요 될 뿐더러 체계적으로 가장 좋아 보이는 신경망 모델에 도달하였는 지도 확실치 않다. 따라서 , 본 논문에서는 실험계획법을 다층 퍼셉트론 신경망의구조설계에 적용하여 적은 실험횟수로 적합한 신경망 모델을 구성할 수 있음을 검증하고, 실제사례에 적용하여 그 유용성을 제시하고자 한다.

  • PDF

System Identification Using Hybrid Recurrent Neural Networks (Hybrid 리커런트 신경망을 이용한 시스템 식별)

  • Choi Han-Go;Go Il-Whan;Kim Jong-In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing. This paper describes system identification using the hybrid neural network, composed of locally(LRNN) and globally recurrent neural networks(GRNN) to improve dynamics of multilayered recurrent networks(RNN). The structure of the hybrid nework combines IIR-MLP as LRNN and Elman RNN as GRNN. The hybrid network is evaluated in linear and nonlinear system identification, and compared with Elman RNN and IIR-MLP networks for the relative comparison of its performance. Simulation results show that the hybrid network performs better with respect to the convergence and accuracy, indicating that it can be a more effective network than conventional multilayered recurrent networks in system identification.

  • PDF