• Title/Summary/Keyword: 다채널전극

Search Result 22, Processing Time 0.033 seconds

A Study of Multi-channel AFS for Marine Traffic Facilities (해양교통시설물용 다채널 AFS에 관한 연구)

  • Kim, Ji-Yoon;Lee, Ji-Young;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-80
    • /
    • 2015
  • After some period of time, the marine traffic facilities find problems caused by shellfish adhered to inside and inlet of the water column. Therefore, single-channel AFS(Anti-Fouling System) has been applied in order to minimize the deposition of shellfish. However, imbalance phenomenon of ionization of copper electrodes that are used for single-channel AFS appeared. This problem resulted in frequent replacement of anode. In this paper, multi-channel current control system has been developed, as well as the related hardware has been designed and fabricated. Further, experimental study has been undertaken to compare the application of single and multi- channel AFS. Through the sea experiments, it was possible to confirm that the copper electrode used for multi-channel AFS is uniformly ionized.

Waveform Sorting of Rabbit Retinal Ganglion Cell Activity Recorded with Multielectrode Array (다채널전극으로 기록한 토끼 망막신경절세포의 활동전위 파형 구분)

  • Jin Gye Hwan;Lee Tae Soo;Goo Yang Sook
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.148-154
    • /
    • 2005
  • Since the output of retina for visual stimulus is carried by neurons of very diverse functional properties, it is not adequate to use conventional single electrode for recording the retinal action potential. For this purpose, we used newly developed multichannel recording system for monitoring the simultaneous electrical activities of many neurons in a functioning piece of retina. Retinal action potentials are recorded with an extra-cellular planar array of 60 microelectrodes. In studying the collective activity of the ganglion cell population it is essential to recognize basic functional distinctions between individual neurons. Therefore, it is necessary to detect and to classify the action potential of each ganglion cell out of mixed signal. We programmed M-files with MATLAB for this sorting process. This processing is mandatory for further analysis, e.g. poststimulus time histogram (PSTH), auto-correlogram, and cross-correlogram. We established MATLAB based protocol for waveform classification and verified that this approach was effective as an initial spike sorting method.

  • PDF

Characterization of Rabbit Retinal Ganglion Cells with Multichannel Recording (다채널기록법을 이용한 토끼 망막 신경절세포의 특성 분석)

  • Cho Hyun Sook;Jin Gye-Hwan;Goo Yong Sook
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • Retinal ganglion cells transmit visual scene as an action potential to visual cortex through optic nerve. Conventional recording method using single intra- or extra-cellular electrode enables us to understand the response of specific neuron on specific time. Therefore, it is not possible to determine how the nerve impulses in the population of retinal ganglion cells collectively encode the visual stimulus with conventional recording. This requires recording the simultaneous electrical signals of many neurons. Recent advances in multi-electrode recording have brought us closer to understanding how visual information is encoded by population of retinal ganglion cells. We examined how ganglion cells act together to encode a visual scene with multi-electrode array (MEA). With light stimulation (on duration: 2 sec, off duration: 5 sec) generated on a color monitor driven by custom-made software, we isolated three functional types of ganglion cell activities; ON (35.0$\pm$4.4%), OFF (31.4$\pm$1.9%), and ON/OFF cells (34.6$\pm$5.3%) (Total number of retinal pieces = 8). We observed that nearby neurons often fire action potential near synchrony (< 1 ms). And this narrow correlation is seen among cells within a cluster which is made of 6~8 cells. As there are many more synchronized firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of ganglion cells.

  • PDF

Design of Multi-channel Anti-Fouling System for Marine Traffic Facilities (해양교통시설물용 다채널 AFS 설계)

  • Oh, Jin-Seok;Kuak, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.661-666
    • /
    • 2011
  • Recently, there are active research activities regarding to power systems of marine traffic facilities using a hybrid generation system which includes a photovoltaic generation system and a wave power generation system. However, when the marine traffic system is operated on a maritime environment for a substantial period of time, it was reported that the shellfish was adhered inside the water column. To tackle this problem, researches on the AFS (Anti-Fouling System) are on the progress. However, use of the single channel AFS resulted in frequent replacement of anode. Thus, the paper proposes a multi-channel method on AFS and experiments have been taken place correspondently. To improve the reliability of the experiment, the melting anode result was applied to our simulation program. The outcome of the simulation illustrates that the proposed multi-channel AFS's anode in the buoy have been ionized equally.

Electrical Stimulation Parameters in Normal and Degenerate Rabbit Retina (정상 망막과 변성 망막을 위한 전기자극 파라미터)

  • Jin, Gye-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa (RP) or age related macular degeneration (AMD). Recently Korean consortium launched for developing retinal prosthesis. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we performed voltage stimulation experiment both in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: $50k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. Mono-polar electrical stimulation was applied through one of the 60 MEA channel, and the remaining channels were used for recording. The electrical stimulus was a constant voltage, charge-balanced biphasic, anodic-first square wave pulse without interphase delay, and 50 trains of pulse was applied with a period of 2 sec. Different electrical stimuli were applied. First, pulse amplitude was varied (voltage: $0.5{\sim}3.0V$). Second, pulse duration was varied $(100{\sim}1,200{\mu}s)$. Evoked responses were analyzed by PSTH from averaged data with 50 trials. Charge density was calculated with Ohm's and Coulomb's law. In normal retina, by varying the pulse amplitude from 0.5 to 3V with fixed duration of $500{\mu}s$, the threshold level for reliable ganglion cell response was found at 1.5V. The calculated threshold of charge density was $2.123mC/cm^2$. By varying the pulse duration from 100 to $1,200{\mu}s$ with fixed amplitude of 2V, the threshold level was found at $300{\mu}s$. The calculated threhold of charge density was $1.698mC/cm^2$. Even after the block of ON-pathway with L-(1)-2-amino-4-phosphonobutyric acid (APB), electrical stimulus evoked ganglion cell activities. In this APB-induced degenerate retina, by varying the pulse duration from 100 to $1200{\mu}s$ with fixed voltage of 2 V, the threshold level was found at $300{\mu}s$, which is the same with normal retina. More experiment with APB-induced degenerate retina is needed to make a clear comparison of threshold of charge density between normal and degenerate retina.

  • PDF

Development of Multichannel Real Time Data Acquisition and Signal Processing System for Nervous System Analysis (다채널 실시간 신경신호 기록 및 신경계 분석을 위한 시스템의 개발)

  • 김상돌;김경환;김성준
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.469-475
    • /
    • 2000
  • 신경신호의 계측은 신경계의 연구에 필수적인 도구로 최근 반도체미세전극기술 등 수십, 수백개의 채널로부터 신경신호를 기록할 수 있는 방법들이 발달함에 따라 많은 수의 뉴런으로부터 신경 신호를 측정하여 컴퓨터로 그 신호를 처리할 수 있는 시스템의 필요성은 더욱 커지고 있다. 본 연구에서는 최대 16채널의 신경신호를 실시간에 측정하여 기록하고, 저장된 신호로부터 활동전위를 검출하며, 단일 뉴런들로부터의 신호를 분류하여 spike train의 형태로 저장한 뒤 여러 뉴런들간의 상관관계를 분석하기 위한 spike train 해석이 가능한 시스템을 개발하였다. 이 시스템은 보통사양의 PC이외에는 단지 신호획득보드만을 포함하여 다채널미세전극으로부터 뉴런의 신호를 측정, 증폭하여 호스트PC로 전송하고 저장하며 이로부터 활동전위를 검출하여 단일뉴런으로부터의 spike train으로 분류할 수 있다. 또한 저장된 spike train들로부터 신경회로망을 이루는 여러뉴런 들간의 관계를 분석하여 기능들이 시스템에 포함되어있다. 개발된 시스템을 사용하여 개구리 감각 신경의 신호를 실시간에 동시기록하여 활동전위을 검출하고 특징추출방법과 principal component analysis를 이용하여 분류한 뒤 spike train 해석을 수행하였다.

  • PDF

Recording and Analysis of Peripheral Nerve Activity Using Multi-Electrode Array (다채널 신경전극 어레이를 이용한 말초 신경신호의 측정 및 분석)

  • Chu, Jun-Uk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • Reliable recording and analysis of peripheral nerve activity is important to recognize the user's intention for controlling a neuro-prosthetic hand. In this paper, we present a peripheral nerve recording system that consisted of an intrafascicular multi-electrode array, an electrode insertion device, and a multi-channel neural amplifier. The 16 channel multi-electrode array was stably implanted into the sciatic nerve of the rat under anesthesia using the electrode insertion device. During passive movements and mechanical stimuli, muscle and cutaneous afferent signals were recorded with the multi-channel neural amplifier. Furthermore, we propose a spike sorting method to isolate individual neuronal unit. The muscle proprioceptive units were classified as muscle spindle afferents or Golgi tendon organ afferents, and the skin exteroceptive units were categorized as slow adapting afferents or fast adapting afferents. Experimental results showed that the proposed method could be applicable to record and analyze peripheral nerve activity in neuro-prosthetic systems.

Comparison of Retinal Waveform between Normal and rd/rd Mouse (정상 마우스와 rd/rd 마우스의 망막파형 비교)

  • Ye, Jang-Hee;Seo, Je-Hoon;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.157-163
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa or age-related macular degeneration. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we investigated differences of the retinal waveforms in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: 50 $k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. In normal mice (C57BL/6J strain) of postnatal day 28, only short duration (<2 ms) retinal spikes were recorded. In rd/rd mice (C3H/HeJ strain), besides normal spikes, waveform with longer duration (~100 ms), the slow wave component was recorded. We attempted to understand the mechanism of this slow wave component in degenerate retina using various synaptic blockers. We suggest that stronger glutamatergic input from bipolar cell to the ganglion cell in rd/rd mouse than normal mouse contributes the most to this slow wave component. Out of many degenerative changes, we favor elimination of the inhibitory horizontal input to bipolar cells as a main contributor for a relatively stronger input from bipolar cell to ganglion cell in rd/rd mouse.

  • PDF

Discriminant Analysis of Marketed Beverages Using Multi-channel Taste Evaluation System (다채널 맛 평가시스템에 의한 시판음료의 판별분석)

  • Park, Kyung-Rim;Bae, Young-Min;Park, In-Seon;Cho, Yong-Jin;Kim, Nam-Soo
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.300-306
    • /
    • 2004
  • Eight cation or anion-responsive polymer membranes were prepared by a casting procedure employing polyvinyl chloride, Bis (2-ethylhexyl)sebacate and each electroactive material in the ratio of 66 : 33 : 1. The resulting membranes were separately installed onto the sensitive area of the ionic electrodes to produce an 8-channel taste sensor array. The taste sensors of the array were connected to a high-input impedance amplifier and the amplified sensor signals were interfaced to a PC via an A/D converter. The taste evaluation system was applied to a discriminant analysis on six groups of marketed beverages like sikhye, sujunggwa, tangerine juice, ume juice, ionic drink and green tea. When the signal data from the sensor array were analyzed by principal component analysis after normalization, the 1st, 2nd and 3rd principal component explained most of the total data variance. The six groups of the analyzed beverages were discriminated well in the three dimensional principal component space. The half of the five groups of the analyzed beverages was also discriminated in the two dimensional principal component plane.