• Title/Summary/Keyword: 다짐공법

Search Result 153, Processing Time 0.025 seconds

MECHANISM OF GROUND IMPROVEMENT BY BLASTING TECHNOIQUE (발파공법에 의한 지반개량의 작용원리)

  • 손근종
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.131-136
    • /
    • 1992
  • 발파공법은 비 점토성 지반의 심층 개량처리에 있어서 경제적이며 실용성 있는 방법이다. 발파에 의한 흙의 다짐효과는 복잡한 과정을 통하여 이루어지며 좋은 결과를 얻기 위해서는 발파 계획에 있어서 동 공법의 작용원리를 잘 이해하고 적용하여야 한다. 본 연구에서는 발파공법에 의한 흙의 다짐효과에 관한 과거의 연구자료를 광범위하게 조사하였다. 지반개량 작용원리에 관련하여 특별한 현상과 증거를 제시하는 실제 사례 자료를 기초로 하여 현재까지 흙의 밀도증가 요인을 설명해 온 개념은 발파에 수반되어 주변 주반에 발생하는 지반거동현상을 설명하기에 부족함이 있음을 지적하였다. 또한 발파지점 부근에 형성되는 액상화 영역과 그 외부 영역에서 각각 발생되는 과인간극수압 및 지반응력상태, 이에 따른 지반침하 형태 그리고 개량지반의 강성 및 강도특성에 관하여 고찰하였다.

  • PDF

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

A Numerical Study on the Prevention of Clogging in Granular Compaction Pile (쇄석다짐말뚝에 발생하는 간극막힘 저감방안에 관한 수치해석적 연구)

  • Jeong, Jaewon;Lee, Seungjun;Park, Nowon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • Recently, engineering problems such as long-term settlement, differential settlement, and the resultant structural damage, have been frequently reported at construction sites. Use of Sand Compaction Piles(SCP) and Granular Compaction Piles(GCP) are good at remedying existing problems, improving bearing capacity and promoting consolidation. However, such compaction piles have the potential for clogging, which would limit their usability. Investigations into the potential for clogging in SCP, GCP, and GCP mixed with sand has not been thoroughly conducted and is the objective of this current study. Large scale direct shear tests were performed on sections of SCP, GCP, and sand mixed GCP to evaluate bearing capacity. Discrete Element Method analyses were conducted with PFC3D and Finite Element Analyses were conducted with MIDAS GTS to propose an algorithm to help reduce clogging in the granular compaction piles. Results from the large scale direct shear test and multiple simulations suggest a 70% gravel and 30% sand mixing ratio to be optimal for bearing capacity and reducing clogging.

Application of Dynamic Compaction For Finished Landfill (쓰레기 매립지반에서 동다짐의 활용 사례)

  • Jang, Yeon-Soo;Song, Yun-Seop;Jeon, Han-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1472-1477
    • /
    • 2009
  • The landfill ground that consists of sandy soil or contains boulder or has waste ground such as waste landfill can be often applied by dynamic compaction method considering quick construction and economic advantages. In this study, the improvement efficiency of the dynamic compaction method that is used on the waste disposal ground of Tague Freight Terminal constrution site is analyzed. The results show that the N values are increased from 6.5/30 to 22.5/30, which is 3.5 times increase compared with the N value before dynamic compaction. The amount of settlement is in the range of 0.706~1.729m. the $\alpha$ vlues suggested by Leonards et al.(1980) was about 0.25~0.48, which are quite similar to to not only 0.3~0.5 of the findings of waste layer of the Society of Soil Engineering of Japan (1987) but also 0.35~0.4 of that of mine waste of Lukas (1986).

  • PDF

Usage of Indigenous Material for Sustainable Construction at Mae-Hae, Thailand - Focused on Rammed Earth Method - (태국 매해 지역에서의 지속가능한 건축재료 활용연구 - 흙다짐 공법을 중심으로 -)

  • Kim, Doo-Soon;Jeong, Sang-Mo
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • Limited resources for construction material in the Mae-Hae region, a remote Northern Thailand, acted as an impetus to introduce a new way for constructing their dwellings. The new construction material brought new construction methodology, namely, using earth and bamboo which are indigenous materials, readily available for them to use. Using indigenous material at Mae-Hae region was most ecological and logical method for establishing sustainable dwellings both in terms of monetary and ecological reasons. Prior to the construction at Mae-Hae, Thailand, series of experimental tests on the strength of rammed earth were performed off site at our university and also brought soil samples from the actual job site at Mae-Hae for detailed soil analysis. Through the tests, integrity of the earth and characteristics of the soil were established to build a small senior citizen center as an example. This appropriate technology is expected to contribute to the sustainable construction at Mae-Hae.

Estimation of Ultimate Bearing Capacity for Randomly Installed Granular Compaction Pile Group (임의의 배치형태로 설치된 무리형태의 조립토 다짐말뚝에 대한 극한지지력의 평가)

  • 신방웅;채현식;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.181-191
    • /
    • 2001
  • Granular compaction piles increase the load bearing capacity of the soft ground and reduce the settlement of fecundation built on the reinforced soil. Also the granular compaction piles accelerate the consolidation of soft ground using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. In the present study, the estimation procedure for the ultimate bearing capacity of randomly installed granular compaction pile group is proposed. Also, carbon rod tests have been peformed for verifying the group effect of granular compaction piles and the behavior characteristics such as bulging failure zone on granular compaction piles. From the test results, it is found that bulging failure shape of granular compaction piles was conical shape and the ultimate bearing capacity increased as the spacing of piles became gradually narrow. Also, from the proposed method in this study, the optimal locations of granular compaction piles with various installed cases are analyzed. The results were shown that the bearing capacity was increased in the case concentrated on the central part of pile group.

  • PDF