• 제목/요약/키워드: 다중 클래스

검색결과 252건 처리시간 0.02초

다중 사용자 온라인 게임 개발을 통한 소프트웨어 개발 교육 (Software Development Education through Developing a usable Multiplayer Online Game)

  • 윤일미;게리 앵;권오영
    • 한국실천공학교육학회논문지
    • /
    • 제4권2호
    • /
    • pp.38-45
    • /
    • 2012
  • 게임제작은 전산학을 가르치는 효과적이고 매력적인 방법이다. 다중사용자 게임제작은 기술, 팀웍, 소프트웨어 공학등 중요한 측면들을 요구하고 있다. 전체 클래스를 다수의 팀으로 구성하고, 학생들은 하나 혹은 두 개의 팀에 속하였다. 각 팀은 한학기동안 자신들의 진행상황을 발표하고, 향후 이정표와 트러블슈팅에 대해 논의하고, 명확한 소통을 위해 문서를 갱신하고, SVN(Subversion)을 활용하였다. 다른 클래스 구성과 달리, 모든 학생이 하나의 목적을 달성하려는 회사처럼 서로 협력하여 일을 했다. 한학기동안 학생들은 개념설계부터 시작해서 "deBugger(2009)"와 "World of Balance(2011)"라는 다중사용자 온라인 게임을 완성했다. 더불어 게임설계, 3D 그래픽스, 게임엔진, 서버-클라이언트 구조, 게임프로토콜, 네트워크 프로그래밍, 데이터베이스, 소프트웨어공학, 팀 프로젝트로서 대규모 어플리케이션 제작방법들을 학습할 수 있었다.

  • PDF

온톨로지 분석 기반의 UML클래스 모델을 이용한 데이터 통합 (An Integration of Data by using UML Class Models Based on the Ontology Analysis)

  • 서진원;공헌택;임재현;김치수
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.422-430
    • /
    • 2008
  • 데이터 통합은 상이한 소스로부터 이종의 데이터를 결합하고, 사용자에게 단일 접근 점을 통해 다중 소스의 모든 데이터에 투명하게 액세스하는 것을 허용하는 기술이다. 데이터 통합의 어려움은 데이터의 이종성 즉, 스키마의 이종성, 시멘틱의 이종성이다. 따라서 데이터의 풍부한 시멘틱이 데이터 소스의 이종성으로 인한 충돌을 해결하기 위한 주요한 요인이다. 그러나 UML 클래스 모델에서는 데이터의 스키마 기반 시멘틱만을 표현하기 때문에 온톨로지와 같은 대안책을 이용해 추가적인 시멘틱을 제공하는 것이 바람직하다. 본 논문에서는 온톨로지 분석을 이용해 UML 클래스 모델로 표현된 두 데이터 소스를 통합하기 위한 방법을 제시한다. 여기서 온톨로지는 각 소스의 데이터에 대한 시멘틱을 표현하는데 적용된다. 온톨로지의 유사성과 차이점을 결정하기 위해 온톨로지를 분석하고 비교한다. 비교 결과는 통합 정보에 대해 질의가 가능한 통합 온톨로지를 구축하는데 사용된다.

판별 함수를 이용한 문턱치 선정에 의한 약분류기 개선 (Improving Weak Classifiers by Using Discriminant Function in Selecting Threshold Values)

  • 샴 아디카리;유현중;김형석
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.84-90
    • /
    • 2010
  • Viola와 Jones가 사용한 Haar-like 특징 기반 약분류기의 분별력을 개선하기 위하여, 2차 판별식에 기반한 판정 경계(decision boundary) 결정 방법을 제안한다. Viola와 Jones가 부스팅된 약분류기 앙상블을 사용해서 강분류기를 만들 때 사용한 단일 판정 경계 기반 약분류기는 특징 공간을 지나치게 단순하게 해석한 산물이어서 대부분의 경우 최적이 아니며, 객체 클래스와 배경 클래스 간을 효율적으로 분별하기에 흔히 너무 약하다. 이 논문에서 제안하는 2차 판별식 분석에 기반한 방법은 객체 클래스와 배경 클래스 사이에 다중 판정 경계를 사용하는 약분류기를 만들어준다. 1000개의 positive 샘플과 3000개의 negative 샘플을 훈련에 사용하고, 500개의 positive와 500개의 negative를 테스트에 사용한 차량 검출 실험을 통해서, 기존의 단일 문턱치 기반 약분류기 방식에 비해, 제안 기법이 더 적은 수의 분류기를 사용하면서도 더 우수한 분류 성능을 제공하는 것을 확인하였다.

선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구 (Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach)

  • 이정형
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.184-192
    • /
    • 2022
  • 밸브의 내부 누설 현상은 밸브의 내부 부품의 손상에 의해 발생하며 배관 시스템의 사고와 운전정지를 일으키는 주요 요인이다. 본 연구는 버터플라이형 밸브의 내부 누설에 따라 배관계에서 발생하는 음향방출 신호를 이용하여 배관 가동 중 실시간 누설 진단의 가능성을 검토하였다. 이를 위해 밸브의 작동 모드별로 측정한 시간영역의 AE 원시신호를 취득하였으며 이로부터 구축한 데이터셋은 데이터 기반의 인공지능 알고리즘에 적용하여 밸브의 내부 누설 유무를 진단하는 모델을 생성하였다. 누설 유무진단을 분류의 문제로 정의하여 SVM 기반의 머신러닝과 CNN 기반의 딥러닝 분류 알고리즘을 적용하였다. 데이터의 특징 추출에 기반한 SVM 분류 모델의 경우, 이진분류 모델에서 구축된 모델에 따라 83~90%의 정확도를 나타냈으며, 다중 클래스인 경우 분류 정확도가 66%로 감소하였다. 반면, CNN 기반의 다중 클래스 분류 모델의 경우 99.85%의 분류 정확도를 얻을 수 있었다. 결론적으로 밸브 내부 누설 진단을 위한 SVM 분류모델은 다중 클래스의 정확도 향상을 위해 적절한 특징 추출이 필요하며, CNN 기반의 분류모델은 프로세서의 성능 저하만 없다면 누설진단과 밸브 개도 분류에 효율적인 접근방법임을 확인하였다.

다중 클래스 분포 문제에 대한 분류 정확도 분석 (Analysis of Classification Accuracy for Multiclass Problems)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.190-193
    • /
    • 2000
  • In this paper, we investigate the distribution of classification accuracies of multiclass problems in the feature space and analyze performances of the conventional feature extraction algorithms. In order to find the distribution of classification accuracies, we sample the feature space and compute the classification accuracy corresponding to each sampling point. Experimental results showed that there exist much better feature sets that the conventional feature extraction algorithms fail to find. In addition, the distribution of classification accuracies is useful for developing and evaluating the feature extraction algorithm.

  • PDF

Bhattacharyya Distance에 기반한 다중클래스 문제에 대한 피춰 추출 기법 (Feature Extraction Method based on Bhattacharyya Distance for Multiclass Problems)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.643-646
    • /
    • 1999
  • In this paper, we propose a feature extraction method based on Bhattacharyya distance for multiclass problems. The Bhattacharyya distance provides a valuable information in determining the effectiveness of a feature set and has been used as separability measure for feature selection. Recently, a feature extraction algorithm hat been proposed for two normally distributed classes based on Bhattacharyya distance. In this paper, we propose to expand the previous approach to multiclass cases. Experiment results show that the proposed method compares favorably with the conventional methods.

  • PDF

초기 피춰벡터 설정을 통한 다중클래스 문제에 대한 최적 피춰 추출 기법 (Optimal Feature Extraction for Multiclass Problems through Proper Choice of Initial Feature Vectors)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.647-650
    • /
    • 1999
  • In this Paper, we propose an optimal feature extraction for multiclass problems through proper choice of initial feature vectors. Although numerous feature extraction algorithms have been proposed, those algorithms are not optimal for multiclass problems. Recently, an optimal feature extraction algorithm for multiclass problems has been proposed, which provides a better performance than the conventional feature extraction algorithms. In this paper, we improve the algorithm by choosing good initial feature vectors. As a result, the searching time is significantly reduced. The chance to be stuck in a local minimum is also reduced.

  • PDF

다중클래스 QoS를 지원하는 IP라우터의 성능분석을 위한 해석적 모델의 구현 (Anattical Perfowmnce Modeling of Multi-class QoS IP Router)

  • 진승의;김태일;이형호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(1)
    • /
    • pp.257-260
    • /
    • 2001
  • As today's network infrastructure continues to grow and DiffServ IP networks ate now available to provide various levels of flexible QoS services. DiffServ guarantees good scalability but shows dynamic QoS dependent on network traffic loads. Therefore, in this paper, we investigate the dynamics of DiffSev QoS and present analytical model to estimate the allowable traffic load under the given network conditions.

  • PDF

Fuzzy c-means 알고리즘에서의 가변학습 가중치의 효과 (The Effect of Variable Learning Weights in Fuzzy c-means algorithm)

  • 박소희;조제황
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.109-112
    • /
    • 2001
  • 기존의 K-means 알고리즘은 학습벡터가 단일군집에 할당되는 방법이 crisp 이므로 다른 군집에 할당될 확률을 무시하게 된다. 따라서 군집화 작업과 관련하여 반복적인 코드북 설계 과정에서 각 학습벡터를 다중 군집으로 할당하는 Fuzzy c-means를 사용한다. 또한 Fuzzy c-means 알고리즘의 학습과정에서 구해지는 각 클래스 의 프로토타입에 가중치를 곱하여 다음 학습의 프로토타입으로 사용함으로써 Fuzzy c-means 알고리즘 적용 결과 얻어지는 코트북의 성능을 기존 알고리즘과 비교하여 개선된 Fuzzy c-means 알고리즘을 찾기 위한 근거를 마련한다.

  • PDF

Rough 집합을 이용한 사례베이스에 관한 연구 (A Study on Reducsion of CBR Using Rough set)

  • 최성혜;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.340-343
    • /
    • 1996
  • 실세계에서 존재하는 대부분의 지식은 다양한 패턴들로 구성되어 있다. 본 논문에서는 사례베이스 추론(Case-Based Reasoning : CBR)에서 다중의 의미를 갖는 불확실한 지식을 쉽게 표현할 수 있는 러프 집합을 이용하여 지식의 함축의 의미를 갖는 지식을 간략화하는 방법을 제안한다. 전문가의 지식 구조를 명확화 하는데는 많은 노력이 필요하고 지식획득의 병목현상이 일어난다. 이러한 문제점을 해결하기 위해 많은 사례의 수를 러프 집합의 성질을 이용하여 사례를 동치 클래스로 분류하여 사례의 수를 감소하므로써 CBR의 기능을 향상시킨다.

  • PDF