• Title/Summary/Keyword: 다중이동로봇

Search Result 82, Processing Time 0.031 seconds

Study of Robust Position Recognition System of a Mobile Robot Using Multiple Cameras and Absolute Space Coordinates (다중 카메라와 절대 공간 좌표를 활용한 이동 로봇의 강인한 실내 위치 인식 시스템 연구)

  • Mo, Se Hyun;Jeon, Young Pil;Park, Jong Ho;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.655-663
    • /
    • 2017
  • With the development of ICT technology, the indoor utilization of robots is increasing. Research on transportation, cleaning, guidance robots, etc., that can be used now or increase the scope of future use will be advanced. To facilitate the use of mobile robots in indoor spaces, the problem of self-location recognition is an important research area to be addressed. If an unexpected collision occurs during the motion of a mobile robot, the position of the mobile robot deviates from the initially planned navigation path. In this case, the mobile robot needs a robust controller that enables the mobile robot to accurately navigate toward the goal. This research tries to address the issues related to self-location of the mobile robot. A robust position recognition system was implemented; the system estimates the position of the mobile robot using a combination of encoder information of the mobile robot and the absolute space coordinate transformation information obtained from external video sources such as a large number of CCTVs installed in the room. Furthermore, vector field histogram method of the pass traveling algorithm of the mobile robot system was applied, and the results of the research were confirmed after conducting experiments.

Strapdown Passive Localization Sensor Design for Multi-robot Applications (다중 자율이동로봇 응용을 위한 스트랩다운형 피동 측위 센서 설계)

  • Suh, Ui-Suk;Jung, Young-Kwang;Kim, Eun-Chong;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1381-1382
    • /
    • 2015
  • 본 논문에서는 초음파 수신기 어레이 및 아날로그 신호처리부로 구성된 스트랩다운 측위센서를 이용하여 특정 위치에 장착되어 있는 송신기와 로봇 간 상대위치를 측정할 수 있는 새로운 형태의 자율주행로봇 보조항법 시스템을 제안한다. 이를 이용하여 상태변수 간의 기하학적 상관관계를 활용하여 십자형으로 배열된 다중센서 기반 피동 위치추정 필터 구현에 사용되는 설계변수의 불완전성을 보상하는 방법을 제안한다. 모의실험을 통해 제안한 방법의 유용성을 검증한다.

  • PDF

App]ication of Supervisory Control Theory to Modeling and Control of a Fleet of Mobile Robots (다중이동로봇의 모델링 및 제어를 위한 관리제어이론의 응용에 관한 연구)

  • 신성영;조광현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.59-59
    • /
    • 2000
  • In this paper, we present a framework for modeling and control of multiple mobile robots which cowork within a bounded workspace and limited resources. To achieve this goal, we adopt a formalism of discrete event system and supervisory control theory based on Petri nets. We can divide our whole story into two parts: first, we search the shortest path using the distance vector algorithm, and then we construct the control scheme from which a number of mobile robots can work within a bounded workspace without any collision. The use of Petri net modeling allows us In synthesize a controller which achieves a control specification for the desired closed-loop behavior efficiently. Finally, the usefulness of the proposed Petri net formalism is illustrated by a simulation study.

  • PDF

Charging of Sensor Network using Multiple Mobile Robots (다중 이동 로봇을 이용한 센서 네트워크의 충전)

  • Moon, Chanwoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.345-350
    • /
    • 2021
  • The maintenance of sensor networks, installed in a wide area has been an issue for a long time. In order to solve this problem, studies to supply energy to a sensor network using a robot has been carried out by several researchers. In this study, for a sensor network consisting of power nodes supplied with energy by multiple robots and sensor nodes around them, we propose a method of allocating a work area using a modified k-means algorithm so that the robots move the minimum distance. Through the simulation study using the energy transfer rate of the robot as a variable, it is shown that nodes of each allocated area can maintain survival, and the validity of the proposed modified k-means algorithm is verified.

Distance Measurement of the Multi Moving Objects using Parallel Stereo Camera in the Video Monitoring System (영상감시 시스템에서 평행식 스테레오 카메라를 이용한 다중 이동물체의 거리측정)

  • 김수인;이재수;손영우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.137-145
    • /
    • 2004
  • In this paper, a new algorithm for the segmentation of the multi moving objects at the 3 dimension space and the method of measuring the distance from the camera to the moving object by using stereo video monitoring system is proposed. It get the input image of left and right from the stereo video monitoring system, and the area of the multi moving objects segmented by using adaptive threshold and PRA(pixel recursive algorithm). Each of the object segmented by window mask, then each coordinate value and stereo disparity of the multi moving objects obtained from the window masks. The distance of the multi moving objects can be calculated by this disparity, the feature of the stereo vision system and the trigonometric function. From the experimental results, the error rate of a distance measurement be existed within 7.28%, therefore, in case of implementation the proposed algorithm, the stereo security system, the automatic moving robot system and the stereo remote control system will be applied practical application.

Introduction to u-City Robot System Technology (u-City 로봇시스템기술 동향)

  • Yu, W.P.;Park, S.H.;Chae, H.S.;Lee, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.24 no.5
    • /
    • pp.98-108
    • /
    • 2009
  • u-City 로봇시스템기술은 u-City 환경에서의 IT 인프라를 적극적으로 활용하는 서비스로봇시스템기술을 지칭한다. IT 인프라와의 연계를 위해 전통적인 로봇주행기술은 이동성 지원 센서네트워킹, 로보틱 위치인식서비스 프레임워크, 광역공간 핸드오버지원 로봇주행, 네트워크기반 다중로봇 원격제어, 광역공간 매핑 등 IT 융합형 로봇기술로 발전하였다. 본 고에서는 u-City로봇시스템기술의 최근의 관련 연구현황, 각 구성요소, 그리고 실제 적용사례를 분석함으로써 향후 독자적인 서비스 산업으로의 성장가능성에 대해 살펴본다.

Intelligent Navigation Algorithm for Mobile Robots based on Optimized Fuzzy Logic (최적화된 퍼지로직 기반 이동로봇의 지능주행 알고리즘)

  • Zhao, Ran;Lee, Hong-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.440-445
    • /
    • 2018
  • The work presented in this paper deals with a navigation problem for a multiple mobile robots in unknown dynamic environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots' bodies must be used to detect information about the surroundings. In order to guide the robots along collision-free paths to reach their goal positions, a navigation method based on a combination of primary strategies has been developed. Most of these strategies are achieved by means of fuzzy logic controllers, and are uniformly applied in every robot. In order to improve the performance of the proposed fuzzy logic, the genetic algorithms were used to evolve the membership functions and rules set of the fuzzy controller. The simulation experiments verified that the proposed method effectively addresses the navigation problem.

Joint Space Trajectory Planning on RTOS (실시간 운영체제에서 관절 공간 궤적 생성)

  • Yang, Gil-Jin;Choi, Byoung-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • This paper presents an implementation of a smooth path planning method considering physical limits on a real time operating system for a two-wheel mobile robot. A Bezier curve is utilized to make a smooth path considering a robot's position and direction angle through the defined path. A convolution operator is used to generate the center velocity trajectory to travel the distance of the planned path while satisfying the physical limits. The joint space velocity is computed to drive the two-wheel mobile robot from the center velocity. Trajectory planning, velocity command according to the planned trajectory, and monitoring of encoder data are implemented with a multi-tasking system. And the synchronization of tasks is performed with a real-time mechanism of Event Flag. A real time system with multi-tasks is implemented and the result is compared with a non-real-time system in terms of path tracking to the designed path. The result shows the usefulness of a real-time multi-tasking system to the control system which requires real-time features.

A study of effective filter algorithms for multi-target tracking (다중표적추적을 위한 효과적인 필터 알고리듬에 대한 연구)

  • 이동관;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.99-99
    • /
    • 2000
  • An effect ive filter algorithm that can manage radar beam pointing efficiently is needed to track multi-target in the air. For effective beam management the filter has lobe good enough to predict future position of target and based on this filter output radar beam is control led to point toward the predicted target position in the air. In this paper, we investigate the ${\alpha}$-${\beta}$ filter known for its brief filter structure with the steady-state Kalman filter gain, the ruv filter, and the coordinate-transformed filter that can decouple the measurement noise variance.

  • PDF

Development of vision-based security and service robot (영상 기반의 보안 및 서비스 로봇 개발)

  • Kim Jung-Nyun;Park Sang-Sung;Jang Dong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.308-316
    • /
    • 2004
  • As we know that there are so many restrictions controlling the autonomous robot to turn and move in an indoor space. In this research, Ive adopted the concept ‘Omni-directional wheel’ as a driving equipment, which makes it possible for the robot to move in horizontal and diagonal directions. Most of all, we eliminated the slip error problem, which can occur when the system generates power by means of slip. In order to solve this problem, we developed a ‘slip error correction algorithm’. Following this program, whenever the robot moves in any directions, it defines its course by comparing pre-programmed direction and the current moving way, which can be decided by extracted image of floor line. Additionally, this robot also provides the limited security and service function. It detects the motion of vehicle, transmits pictures to multiple users and can be moved by simple order's. In this paper, we tried to propose a practical model which can be used in an office.

  • PDF