• Title/Summary/Keyword: 다중시기 영상분석

Search Result 74, Processing Time 0.021 seconds

Development of Cloud Detection Method with Geostationary Ocean Color Imagery for Land Applications (GOCI 영상의 육상 활용을 위한 구름 탐지 기법 개발)

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.371-384
    • /
    • 2015
  • Although GOCI has potential for land surface monitoring, there have been only a few cases for land applications. It might be due to the lack of reliable land products derived from GOCI data for end-users. To use for land applications, it is often essential to provide cloud-free composite over land surfaces. In this study, we proposed a cloud detection method that was very important to make cloud-free composite of GOCI reflectance and vegetation index. Since GOCI does not have SWIR and TIR spectral bands, which are very effective to separate clouds from other land cover types, we developed a multi-temporal approach to detect cloud. The proposed cloud detection method consists of three sequential steps of spectral tests. Firstly, band 1 reflectance threshold was applied to separate confident clear pixels. In second step, thick cloud was detected by the ratio (b1/b8) of band 1 and band 8 reflectance. In third step, average of b1/b8 ratio values during three consecutive days was used to detect thin cloud having mixed spectral characteristics of both cloud and land surfaces. The proposed method provides four classes of cloudiness (thick cloud, thin cloud, probably clear, confident clear). The cloud detection method was validated by the MODIS cloud mask products obtained during the same time as the GOCI data acquisition. The percentages of cloudy and cloud-free pixels between GOCI and MODIS are about the same with less than 10% RMSE. The spatial distributions of clouds detected from the GOCI images were also similar to the MODIS cloud mask products.

Research for Calibration and Correction of Multi-Spectral Aerial Photographing System(PKNU 3) (다중분광 항공촬영 시스템(PKNU 3) 검정 및 보정에 관한 연구)

  • Lee, Eun Kyung;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.143-154
    • /
    • 2004
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.

  • PDF

Ground Settlement Monitoring using SAR Satellite Images (SAR 위성 영상을 이용한 도심지 지반 침하 모니터링 연구)

  • Chungsik, Yoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2022
  • In this paper, fundamentals and recent development of the interferometric synthetic aperture radar, known as InSAR, technique for measuring ground deformation through satellite image analysis are presented together with case histories illustrating its applicability to urban ground deformation monitoring. A study area in Korea was selected and processed based on the muti-temporal time series InSAR analysis, namely SBAS (Small Baseline Subset)-InSAR and PS (Persistent Scatterers)-InSAR using Sentinel-1A SAR images acquired from the year 2014 onward available from European Space Agency Copernicus Program. The ground settlement of the study area for the temporal window of 2014-2022 was evaluated from the viewpoint of the applicability of the InSAR technique for urban infrastructure settlement monitoring. The results indicated that the InSAR technique can reasonably monitor long-term settlement of the study area in millimetric scale, and that the time series InSAR technique can effectively measure ground settlement that occurs over a long period of time as the SAR satellite provides images of the Korean Peninsula at regular time intervals while orbiting the earth. It is expected that the InSAR technique based on higher resolution SAR images with small temporal baseline can be a viable alternative to the traditional ground borne monitoring method for ground deformation monitoring in the 4th industrial era.

Atmospheric Correction Issues of Optical Imagery in Land Remote Sensing (육상 원격탐사에서 광학영상의 대기보정)

  • Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1299-1312
    • /
    • 2019
  • As land remote sensing applications are expanding to the extraction of quantitative information, the importance of atmospheric correction is increasing. Considering the difficulty of atmospheric correction for land images, it should be applied when it is necessary. The quantitative information extraction and time-series analysis on biophysical variables in land surfaces are two major applications that need atmospheric correction. Atmospheric aerosol content and column water vapor, which are very dynamic in spatial and temporal domain, are the most influential elements and obstacles in retrieving accurate surface reflectance. It is difficult to obtain aerosol and water vapor data that have suitable spatio-temporal scale for high- and medium-resolution multispectral imagery. Selection of atmospheric correction method should be based on the availability of appropriate aerosol and water vapor data. Most atmospheric correction of land imagery assumes the Lambertian surface, which is not the case for most natural surfaces. Further BRDF correction should be considered to remove or reduce the anisotropic effects caused by different sun and viewing angles. The atmospheric correction methods of optical imagery over land will be enhanced to meet the need of quantitative remote sensing. Further, imaging sensor system may include pertinent spectral bands that can help to extract atmospheric data simultaneously.

A Convolutional Neural Network Model with Weighted Combination of Multi-scale Spatial Features for Crop Classification (작물 분류를 위한 다중 규모 공간특징의 가중 결합 기반 합성곱 신경망 모델)

  • Park, Min-Gyu;Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1273-1283
    • /
    • 2019
  • This paper proposes an advanced crop classification model that combines a procedure for weighted combination of spatial features extracted from multi-scale input images with a conventional convolutional neural network (CNN) structure. The proposed model first extracts spatial features from patches with different sizes in convolution layers, and then assigns different weights to the extracted spatial features by considering feature-specific importance using squeeze-and-excitation block sets. The novelty of the model lies in its ability to extract spatial features useful for classification and account for their relative importance. A case study of crop classification with multi-temporal Landsat-8 OLI images in Illinois, USA was carried out to evaluate the classification performance of the proposed model. The impact of patch sizes on crop classification was first assessed in a single-patch model to find useful patch sizes. The classification performance of the proposed model was then compared with those of conventional two CNN models including the single-patch model and a multi-patch model without considering feature-specific weights. From the results of comparison experiments, the proposed model could alleviate misclassification patterns by considering the spatial characteristics of different crops in the study area, achieving the best classification accuracy compared to the other models. Based on the case study results, the proposed model, which can account for the relative importance of spatial features, would be effectively applied to classification of objects with different spatial characteristics, as well as crops.

A study on the analysis of current status of Seonakdong River algae using hyperspectral imaging (초분광영상을 이용한 서낙동강 조류 발생현황 분석에 관한 연구)

  • Kim, Jongmin;Gwon, Yeonghwa;Park, Yelim;Kim, Dongsu;Kwon, Jae Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.301-308
    • /
    • 2022
  • Algae is an indispensable primary producer in the ecosystem by supplying energy to consumers in the aquatic ecosystem, and is largely divided into green algae, blue-green algae, and diatoms. In the case of blue-green algae, the water temperature rises, which occurs in the summer and overgrows, which is the main cause of the algae bloom. Recently, the change in the occurrence time and frequency of the algae bloom is increasing due to climate change. Existing algae survey methods are performed by collecting water and measuring through sensors, and time, cost and manpower are limited. In order to overcome the limitations of these existing monitoring methods, research has been conducted to perform remote monitoring using spectroscopic devices such as multispectral and hyperspectral using satellite image, UAV, etc. In this study, we tried to confirm the possibility of species classification of remote monitoring through laboratory-scale experiments through algal culture and river water collection. In order to acquire hyperspectral images, a hyperspectral sensor capable of analyzing at 400-1000 nm was used. In order to extract the spectral characteristics of the collected river water for classification of algae species, filtration was performed using a GF/C filter to prepare a sample and images were collected. Radiation correction and base removal of the collected images were performed, and spectral information for each sample was extracted and analyzed through the process of extracting spectral information of algae to identify and compare and analyze the spectral characteristics of algae, and remote sensing based on hyperspectral images in rivers and lakes. We tried to review the applicability of monitoring.

Change of NDVI by Surface Reflectance Based on KOMPSAT-3/3A Images at a Zone Around the Fukushima Daiichi Nuclear Power Plant (후쿠시마 제1 원전 주변 지역의 KOMPSAT-3/3A 영상 기반 지표반사도 적용 식생지수 변화)

  • Lee, Jihyun;Lee, Juseon;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2027-2034
    • /
    • 2021
  • Using multi-temporal KOMPSAT-3/3A high-resolution satellite images, the Normalized Difference Vegetation Index (NDVI) for the area around the Fukushima daiichi nuclear power plant was determined, and the pattern of vegetation changes was analyzed. To calculate the NDVI, surface reflectance from the KOMPSAT-3/3A satellite image was used. Satellite images from four years were used, and the zones where the images overlap was designated as the area of interest (AOI) for the study, and by setting a profile passing through highly vegetated area as a data analysis method, the changes by year were examined. In addition, random points were extracted within the AOI and displayed as a box plot to quantitatively indicate change of NDVI distribution pattern. The main results of this study showed that the NDVI in 2014 was low within AOI in the vicinity of the nuclear power plant, but vegetated area continued to expand until 2021. These results were also confirmed in the change monitoring results shown in a profile or box plot. In disaster areas where access is restricted, such as the Fukushima nuclear power plant area, where it is difficult to collect field data, obtaining land cover classification products with high accuracy using satellite images is challenging, so it is appropriate to analyze them using primary outputs such as vegetation indices obtained from high-resolution satellite imagery. It is necessary to establish an international cooperation system for jointly utilizing satellite images. Meanwhile, to periodically monitor environmental changes in neighboring countries that may affect the Korean peninsula, it is necessary to establish utilization models and systems using high-resolution satellite images.

Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE (SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Changwoo;Wahyu, Wiratama;Jung, Jihun;Hong, Seongjae;Kim, Daehee;Kang, Joohyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1579-1590
    • /
    • 2020
  • In this paper, spatially-adaptive denormalization (SPADE) based U-Net is proposed to detect changes by using high-resolution satellite images. The proposed network is to preserve spatial information using SPADE. Change detection methods using high-resolution satellite images can be used to resolve various urban problems such as city planning and forecasting. For using pixel-based change detection, which is a conventional method such as Iteratively Reweighted-Multivariate Alteration Detection (IR-MAD), unchanged areas will be detected as changing areas because changes in pixels are sensitive to the state of the environment such as seasonal changes between images. Therefore, in this paper, to precisely detect the changes of the objects that consist of the city in time-series satellite images, the semantic spatial objects that consist of the city are defined, extracted through deep learning based image segmentation, and then analyzed the changes between areas to carry out change detection. The semantic objects for analyzing changes were defined as six classes: building, road, farmland, vinyl house, forest area, and waterside area. Each network model learned with KOMPSAT-3A satellite images performs a change detection for the time-series KOMPSAT-3 satellite images. For objective assessments for change detection, we use F1-score, kappa. We found that the proposed method gives a better performance compared to U-Net and UNet++ by achieving an average F1-score of 0.77, kappa of 77.29.

Research about Multi-spectral Photographing System (PKNU No.2) Development (다중영상촬영을 위한 PKNU 2호 개발에 관한 연구)

  • 최철웅;김호용;전성우
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.291-305
    • /
    • 2003
  • The cost of deploying Geological and Environmental information gathering systems, especially when such systems obtain remote sensing and photographic data through the use of commercial satellites and aircraft. Besides the high cost equipment required, adverse weather conditions can further restrict a researcher's ability to collect data anywhere and anytime. To mitigate this problem, we have developed a compact, multi-spectral automatic Aerial photographic system. This system's Multi-spectral camera is capable of the visible (RGB) and infrared (NIR) bands (3032*2008 pixel). It consists of a thermal infrared camera and automatic balance control, and can be managed by a palm-top computer. Other features includes a camera gimbal system, GPS receiver, weather sensor among others. We have evaluated the efficiency of this system in several field tests at the following locations: Kyongsang-bukdo beach, Nakdong river (at each site of mulkeum-namji and koryung-gumi), and Kyungahn River. Its tested ability in aerial photography, weather data, as well as GPS data acquisition demonstrates its flexibility as a tool for environmental data monitoring.

A Study on distribution and change of NDVI with Land-Cover change in City of Sungnam (토지피복 변화에 따른 식생지수(NDVI)분포 및 변화에 관한 연구: 성남시를 중심으로)

  • 성효현;박옥준
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.275-288
    • /
    • 2000
  • The purpose of this study is to analyze relationship between the NDVI change pattern and landcover change pattern in the City of Sungnam during 1985 and 1996. The results of this study are as follows; (1) NDVI of the level 6 and 7 is decreased and the level 5 is increased in the area where Forst area changed to the other land cover during 1985 and 1996. (2) In the area where Agricultural-Pasture changed to forest, NDVI level became higher certainly during that time. But in the area where there has been changed from Agricultural-Pasture to Urban or built-up, Agricultural-Pasture to Barren land, the level of NDVI is decreased. (3) In the Urban or built-up to other land, or built-up the level of NDVI is increased. (4) In the area where Barren land changed to other land cover, the level of NDVI is increased.

  • PDF