• Title/Summary/Keyword: 다중날개

Search Result 16, Processing Time 0.03 seconds

A Study on the Characteristics of Wing Tip Shapes for Induce Drag Reduction (유도항력 감소를 위한 날개끝 형상 특성에 관한 연구)

  • Sheen, Dong-Jin;Lee, Bong-Joon;Hong, Soon-Shin;Kim, Choong-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.3 no.1
    • /
    • pp.81-95
    • /
    • 1995
  • 공기의 흐름 중에 있는 유한 날개의 끝에서는 날개끝 와류로 인하여 날개에 내리흐름(downwash)이 발생하게 된다. 이러한 내리흐름은 유도항력을 발생시켜 양항특성이 감소하게 된다. 따라서 날개끝 와류를 적절히 제어하면 어느 정도 유도항력을 감소시킬 수 있다. 본 논문에서는 직사각형 날개와 테이퍼형 날개 끝에 여러 가지 형상의 strake를 장착하거나, 날개끝 와류를 제어하기 위하여 여러 개의 slot을 형성시켰을 때의 양항특성을 실험 및 수치해석으로 연구한 결과를 기술하였다. 실험결과 직사각형 날개끝에 장착한 wing tip strake의 밑변을 바깥쪽으로 절단한 wing tip strake의 양항특성이 받음각 $8^{\circ}$ 이상에서 우수하였고, 반면에 밑변을 절단하지 않은 경우는 받음각 $0^{\circ}\;^{\sim}\;8^{\circ}$ 사이에서 기본날개보다 양항비가 증가하였다. 테이퍼형 날개끝에 wing tip strake를 장착하였을 때의 양항비는 받음각 전 범위에 걸쳐 기본날개보다 증가하였으며, 받음각$8^{\circ}$ 이상에서 wing tip strake의 밑변을 절단하지 않은 wing tip strake의 양항특성이 우수하였다. 방사형 다중슬롯의 경우 날개끝의 앞전보다 뒷전 쪽에 형성시키는 것이 양항비특성이 우수하였다.

  • PDF

A Study on the Development of Integrated Folding Composite Wing Using Optimal Design and Multiple Processes (최적설계 및 다중공정을 적용한 일체형 접이식 복합재료 날개 개발 연구)

  • Lee, Jong-Cheon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.70-78
    • /
    • 2018
  • This research was carried out to develop an integrated folding wing made from carbon composite materials. Design requirements were reviewed and composite wing sizing was conducted using design optimization with commercial software. Three composite manufacturing processes including hot-press, pultrusion, and autoclave were evaluated and the most suitable processes for the integrated wing fabrication were selected, with consideration given to performance and cost. The determined manufacturing process was verified by two design development tests for selecting the design concept. Stiffness and strength of the composite wing were estimated through structural analyses. The test loads were calculated and static tests about design limit load and design ultimate load were performed using both wings. As a result, the evaluation criterions of the tests were satisfied and structural safety was verified through the series of structural analyses and testing.

Numerical Study of Surface Heat Transfer Effects of Multiple Fan-Shaped Small-Scale Fins (다중 미세 날개구조의 표면 열전달에 미치는 영향분석)

  • Park, Ki-Hong;Park, Sang Hu;Lee, Ju-Chul;Min, June-Kee;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.523-530
    • /
    • 2013
  • In this work, we study a heat transfer enhancement technology using fan-shaped small-scale fins. Fins having a thickness of 10 ${\mu}m$ move up-down by a pulsating flow. Owing to these motions, the heat transfer on a surface increases dramatically. The two-way FSI (fluid-structure interaction) method was applied for the analysis, and the analysis model was evaluated using a single fin model by comparing the experimental results. In summary, a maximum 40% increase in heat transfer capacity using a single and multiple small-scale fins was obtained in comparison with the results obtained without using fins. From this work, we believe that the proposed method can be a promising method for heat transfer enhancement in real applications.

Parametric Study on the Finite Element Idealization Method for Multi-Spar WIng (다중스파 날개의 유한요소 이상화 방법에 관한 인자연구)

  • Kweon, Jin-Hwe;Kang, Gyong-guk;Park, Chan-Woo;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2002
  • A parametric study has been conducted to evaluate the effects of finite element modeling methods on the internal loads, sizing and the weight of the multi-spar aircraft wing structures. The wing is idealized into total 18finite element models and subjected to 4typical external load conditions. An automatic sizing algorithm based on MSC/NASTRAN and MSC/PATRAN is developed. The results show that the critical part affection the internal loads and weight of the structure is wing skin. Effect of modeling of the spar and rib on the structural behavior is not manifest. On the contrast to the general expectation, the models using the bending-resistant elements show the heavier weight than ones by the elements without bending stiffness. From this results, designers of multi-spar wing are recommended to construct the finite element model considering the bending stiffness, or to check the characteristics of the structure before modeling.

The Effect of Recycled Aggregate Produced by the New Crushing Device with Multi-Turn Wings and Guide Plate on the Mechanical Properties and Carbonation Resistance of Concrete (다중 회전 날개 및 가이드 판 설치 파쇄장치를 통해 제작된 순환골재가 콘크리트의 역학적 특성 및 탄산화 저항성에 미치는 영향)

  • Cho, Sung-Kwang;Kim, Gyu-Yong;Eu, Ha-Min;Kim, Yong-Rae;Lee, Chul-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • In this work, multi-turn wings and guide plates are installed on recycled aggregate crushing devices to improve existing low recycled aggregate quality. Simulation analysis to evaluate the crushing efficiency of the new device shows enhanced crushing efficiency since the installation of guide plates shreds most of the inputs inside the crushing drum, and the multi-turn wings and guide plates induce rebound and circulation of the aggregate. Through this, the new device was found to be more economical and efficient than the existing recycled aggregate crushing device. Also, the amount of cement paste and mortar attached to the surface of the aggregate was smaller than that of the existing recycled aggregate, and it was found that the mechanical properties and elastic modulus deterioration were reduced. However, the carbonation resistance of concrete was not improved to the level of natural aggregates due to the remaining tiny cement paste and mortar on the surface of the new recycled aggregate. Therefore, it is deemed necessary to further research and experiment such as device improvement or binder development to reduce durability degradation of concrete mixed with new recycled aggregate.

Design Optimization of a Wing Structure under Multi Load Spectra using PSO algorithm (PSO 알고리즘을 이용한 다중 하중 스펙트럼 하에서의 항공기 날개 구조부재의 최적 설계 연구)

  • Park, Kook Jin;Park, Yong Jin;Cho, Jin Yeon;Park, Chan Yik;Kim, Seung Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.963-971
    • /
    • 2012
  • In this paper, development of optimal design tools for wing structure is described including multi load spectra condition and fatigue analysis. Two dimensional CFD result are used for calculating aerodynamic force. Design variables are composed of a number of rib and spar, positions, and thickness of each structural member. The mission profile for fatigue analysis is composed based upon the results of CFD analysis, the flight-by-flight spectra method, the excessive curves for gust loads. Minor's rule was used to deal with multi-load condition. Stress analysis and fatigue analysis are performed to calculate objective functions. Particle Swarm Optimization(PSO) algorithm was used to apply to problems which have dozens of design variables.

A Micro-observation on the Wing and Secondary Cracks Developed in Gypsum Blocks Subjected to Uniaxial Compression (일축압축상태의 석고 실험체에서 발생하는 날개크랙과 이차크랙에 대한 미시적 관측)

  • 사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 2003
  • Wing and secondary cracks are unique types of cracks observed in rock masses subjected to uniaxial and biaxial compressive loading conditions. In this study, morphological features of wing and secondary cracks developed in gypsum specimens are investigated in the macro and micro scales. Along the path of wing crack, microtensile cracks are observed. Microtensile cracks coalesce with pores and show branch phenomenon. From the onset of the wing crack, multiple initiations of microtensile cracks are observed. Microtensile cracks show tortuous propagation paths and relatively constant aperture of the cracks during the propagation. It is shown that microtensile cracks propagate by splitting failure. At the micro scale, microfsults are observed in the path of the secondary cracks. Along the path of the secondary cracks, separation of grains and conglomerate grains, oblique microfaults, and irregular aperture of microfault are observed. These features show that the secondary cracks are produced in shear mode. The measured sizes of fracture process zone across the propagation direction near the tip of wing and secondary cracks range from 10$\mu{m}$ to 20$\mu{m}$ far wing cracks and from 100$\mu{m}$ to 200$\mu{m}$ for secondary cracks, respectively.

Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion (결빙 증식 최소화를 위한 다중 익형 형상 최적설계)

  • Kang, Min-Je;Lee, Hyeokjin;Jo, Hyeonseung;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.445-454
    • /
    • 2022
  • Ice accretion on the aircraft components, such as wings, fuselage, and empennage, can occur when the aircraft encounters a cloud zone with high humidity and low temperature. The prevention of ice accretion is important because it causes a decrease in the aerodynamic performance and flight stability, thus leading to fatal safety problems. In this study, a shape design optimization of a multi-element airfoil is performed to minimize the amount of ice accretion on the high-lift device including leading-edge slat, main element, and trailing-edge flap. The design optimization framework proposed in this paper consists of four major parts: air flow, droplet impingement and ice accretion simulations and gradient-free optimization algorithm. Reynolds-averaged Navier-Stokes (RANS) simulation is used to predict the aerodynamic performance and flow field around the multi-element airfoil at the angle of attack 8°. Droplet impingement and ice accretion simulations are conducted using the multi-physics computational analysis tool. The objective function is to minimize the total mass of ice accretion and the design variables are the deflection angle, gap, and overhang of the flap and slat. Kriging surrogate model is used to construct the response surface, providing rapid approximations of time-consuming function evaluation, and genetic algorithm is employed to find the optimal solution. As a result of optimization, the total mass of ice accretion on the optimized multielement airfoil is reduced by about 8% compared to the baseline configuration.

다중 익형의 상대적 위치 변화에 따른 공력특성 연구

  • Nam, Do-U;Kim, Yeong-Jin;Park, Jin-Hong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.623-626
    • /
    • 2015
  • 본 연구에서는 CFD 해석 프로그램 EDISON_CFD를 통하여 2차 세계 대전에 소련에서 제작한 복엽기 AN-2의 기체를 기본 모델로 하여 설제 기체에 사용된 TSAGI P-II-14 airfoil를 이용, 기본 모델의 상단 주익과 미익은 고정하고 하단 주 날개의 위치를 변화시켜 공력특성을 분석하였다. 익형의 평행배치의 경우 기본모델에 비해 양력은 적은 크기로 증가하나 항력이 급격히 증가하여 가장 양항비가 낮은 비효율적인 공력 해석 결과를 보였고 복염기 하단 주익의 돌출은 상단 주익의 돌출에 비해 미세한 양력 감소와 항력 증가를 보여 양항비가 감소하는 현상을 보였다. 상, 하단 주익의 상하 간격이 커질수록 양력은 중가, 항력은 감소하며 간격이 작아질수록 양력의 감소와 항력의 증가를 보였다. 본 연구 해석 결과에 따라 순항조건에서의 익형은 상,하 주익간 수직 간격을 넓게 배치하는 것이 가장 효율적으로 볼 수 있다.

  • PDF

Nutritional Analysis of Chicken Parts (닭고기의 부위별 영양 성분 분석)

  • Koh, Ha-Young;Yu, Ick-Jong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.1028-1034
    • /
    • 2015
  • General composition and cholesterol contents of chicken 4 parts (breasts, thighs, legs without skin, and wings with skin) were analyzed. Fatty acids, amino acids, and mineral contents of breasts and thighs were also analyzed and compared with sirloin parts of beef and pork. Lipid contents of chicken parts (1.2% in breasts, 2.8% in thighs, and 14.9% in wings) were lower than those of beef and pork. Protein contents of chicken parts (22.9% in breasts, 19.7% in thighs, and 17.6% in wings) were higher than those of beef and pork. Cholesterol contents of chicken parts (99.0 mg% in wings, 80.8 mg% in thighs, and 56.7 mg% in breasts) were higher than those of beef and pork. However, saturated fatty acid contents of chicken (31.6~32.9%) was lower than those of beef (40.8%) and pork (42.7%). In the meanwhile, unsaturated fatty acid contents of chicken (67.1~68.4%) was higher than those of beef (59.2%) and pork (57.3%). Essential fatty acid contents of chicken (16.6~16.9%) were 1.6 times as high as that of pork (10.4%) and 5 times as high as that of beef (3.9%). Major amino acids composition were glutamic acid, aspartic acid, lysine, and leucine. Ten essential amino acid contents were 11,860 mg% in breasts and 10,454 mg% in thighs, and the ratio of essential amino acids (41.7~44.1%) was similar to those of pork and beef. Mineral contents of chicken were similar to those of pork and beef despites of slight different mineral contents in thighs and breasts.