• Title/Summary/Keyword: 다점피토관

Search Result 3, Processing Time 0.018 seconds

Investigation on the Effective Calibration of Annubar (다점식 피토관의 효율적인 교정에 대한 연구)

  • Choi Yong-Moon;Choi Hae-Man;Choi Ji-Chul;Hong Kyung-Ki;Han Sang-Woo;Kim Woong-Sun;Chun Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.373-380
    • /
    • 2006
  • Annubar is one of popular tools to measure the exhausted gas flow rate from the stacks. For the accurate monitoring of the amount of discharged pollutants, calibration of annubar is very important. Calibration of annubar has been carried out in a wind tunnel. When the length of annubar is longer than the test section size of wind tunnel, it is very difficult to find out typical value of annubar coefficients. So, a measurement technique to calibrate annubar longer than the size of the test section of wind tunnel must be developed. In the present study, an experiment is performed to measure the annubar coefficients in such a limited size of the wind tunnel. The experimental annubar coefficient by using a partial blocking technique is very close to the annubar coefficient of normal condition.

A Study on the Characteristics of Multi-point Pilot Tube Flow-meter (다점 피토관 유량계의 특성에 관한 연구)

  • 임재명;윤복현;박경암
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.35-43
    • /
    • 2001
  • The flow characteristics passing a multi-point Pitot tube flow-meter of diamond shape and the characteristics of flow coefficients of the flow-meter are experimentally studied by varying combination of upstream rectangular dual elbows. The results provide the flow coefficients, which show good stability and reliability within the Reynolds number range coveted here in this study, and which can be used to measure flow-rates in practice. The variation of dual elbows upstream can change the velocity field so much that the flow pattern might thwart the precise flow measurement using the multi-point Pitot tube. The strongest swirl is detected in the case of $90^{\circ}$ dual elbow combination of all. In addition, it is observed that flow separation remains unchanged and occurs at the same point irrespective of various upstream dual elbow combinations.

  • PDF

Uncertainty Assessment of Gas Flow Measurement Using Multi-Point Pitot Tubes (다점 피토관을 이용한 기체 유량 측정의 불확도 평가)

  • Yang, Inyoung;Lee, Bo-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.5-10
    • /
    • 2016
  • Gas flow measurement in a closed duct was performed using multi-point Pitot tubes. Measurement uncertainty was assessed for this measurement method. The method was applied for the measurement of air flow into a gas turbine engine in an altitude engine test facility. 46 Pitot tubes, 15 total temperature Kiel probes and 9 static pressure tabs were installed in the engine inlet duct of inner diameter of 264 mm. Five tests were done in an airflow range of 2~10 kg/s. The flow was compressible and the Reynolds numbers were between 450,000 and 2,220,000. The measurement uncertainty was the highest as 6.1% for the lowest flow rate, and lowest as 0.8% for the highest flow rate. This is because the difference between the total and static pressures, which is also related to the flow velocity, becomes almost zero for low flow rate cases. It was found that this measurement method can be used only when the flow velocity is relatively high, e.g., 50 m/s. Static pressure was the most influencing parameter on the flow rate measurement uncertainty. Temperature measurement uncertainty was not very important. Measurement of boundary layer was found to be important for this type of flow rate measurement method. But measurement of flow non-uniformity was not very important provided that the non-uniformity has random behavior in the duct.