• Title/Summary/Keyword: 다이인발

Search Result 22, Processing Time 0.029 seconds

Study on Dimensional Change in Wire Product During Wire-Drawing Process (선재 인발공정에서 인발제품의 선경변화에 대한 연구)

  • Moon, Chang-Sun;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.723-730
    • /
    • 2012
  • During the cold wire-drawing process, the diameter of a wire is reduced and the length of the wire is increased as the wire passes through the die. The pressure and sliding motion at the interface between the wire and die cause elastic recovery of the workpiece and friction and wear on the die. In addition, wire deformation and frictional heating raise the temperature of the wire and die, resulting in difficulty in manufacturing the drawn products according to a designated inner diameter of the die, deviating from the designated dimension or the inner diameter of the die. In this study, considering the die temperature distribution, the effects of dimensional changes of the drawn products were analyzed quantitatively; these changes are caused by the elastic deformation of the die, the elastic recovery of the workpiece, and the thermal deformation of both the die and the workpiece. It was confirmed that the elastic recovery of the workpiece influenced these changes the most. The initial dies considering these factors could avoid deviation from the designated dimension, and the desired drawn products were obtained by using the designed initial drawing dies.

A Study on the Dieless Wire Drawing Using Microwave (마이크로웨이브를 이용한 Dieless Wire Drawing 에 대한 연구)

  • Huh You;Kim S.H.;Kim J.S.;Kim I.S.;Paik Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.942-945
    • /
    • 2005
  • Micron-sized metal wires are widely used in industries such as filtration, catalyst and composite materials, etc. In the wire drawing process, the die that is used conventionally is an effective and, at the same time, sensitive component. However, a typical array of the dies has caused many problems in the wire drawing process, e.g., large frictional force on the interface between wire and the resulting high heat generation, precise adjustment of the dies, extended cooling system, die abrasion, etc.. Because of these problems, there have been many works that are aiming at improving the efficiency of wire drawing process by analyzing the die geometry and by applying advanced die material to prolong the die life or even at developing a dieless wire drawing system. This paper is dealing with developing a new wire drawing system that is applicable to reduce the wire drawing steps with high draw ratio. The new wire drawing system does not use the dies, but use the self-induced heater that works on the basis of the resonant phenomenon of wire material. The electromagnetic wave is the heating source. The results of the study on the diameter reduction and microwave flow analysis show that the heating effectiveness of the wire is influenced by the energy distribution in the microwave propagation chamber. We can obtain diameter-reduced wires by using microwave in the dieless drawing process. Microwave as a heating source is capable of producing wires without applying dies in wire drawing process.

  • PDF

Dieless Wire Drawing by Enforced Necking Method (강제 네킹에 의한 금속 와이어 인발)

  • Huh, You;Kim, Seung-Hoon;Kim, Ihn-Seok;Paik, Young-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.98-105
    • /
    • 2007
  • In modern industries, materials are required that possess multi-functional properties and at the same time flexibility in their shapes with structural stability. The major technology realizing this requirement consists of thinning metal wires and laying them with stable contact nodes. This research has dealt with a new method to manufacture thin wires by drawing without applying dies, but with introducing enforced necking, which enables to process multi-ends. Based on the new method, the process dynamics was modelled and its steady-state characteristics were analyzed. Results showed that the profiles of the material velocity in the drawing zone increased with a downward convex shape, while the cross-sectional area decreased with the shape of upward convex. The microwave heating turned out to be effective in wire drawing, but dependent on the input feeding direction. The variation in the diameters of the drawn wires was negatively affected by increasing the drawing ratio.

Process Design of Multi-Stage Shape Drawing Process for Cross Roller Guide (크로스 롤러 가이드 다단 형상인발 공정설계에 관한 연구)

  • Lee, Sang-Kon;Lee, Jae-Eun;Lee, Tae-Kyu;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.124-130
    • /
    • 2009
  • In the multi-stage shape drawing process, the most important aspect for the economy is the correct design of the various drawing stage. For most of the products commonly available round or square materials can be used as initial material. However, special products should be pre-rolled. This study proposes a process design method of multi-stage shape drawing process for producing cross roller guide. Firstly, a standard classification of shape drawing process is suggested based on the requirement of pre-rolling process. And a design method is proposed to design the intermediate die shape. The process design method is applied to design the multi-stage shape drawing process for producing cross roller guide. Finally, the effectiveness of the proposed design method is verified by FE-analysis and shape drawing experiment.

Strain Analysis in the Slipline Field for Strip Drawing (판재인발 슬립라인장의 변형해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.660-669
    • /
    • 1989
  • The strain distribution in a wide strip drawn through a wedge-shaped die is obtained from the numerical integration of strain increments along the flow path of material points in the slipline field for a non-hardening material under the plane strain condition. It is shown that the strain in the surface layer increases with friction and that the strain at the mid-plane is a function of area reduction only. The redundant deformation factor, obtained from the average strain in a drawn strip, increases with friction. For the workability analysis of a strip drawing process, the strain states along with hydrostatic stresses are needed for the evaluation of a damage function based on the hole-growth mechanism of ductile fracture. The critical maximum of the damage function is assumed to be a material constant. As a result, mid-plane cracking is likely to occur in a process at a small reduction, with a large die angle, and in poor lubrication. Distortions of an initially transverse line are also calculated.

A Study on the Corner Filling in the Drawing of Quadrangle Rod from Round Bar (원형봉에서 사각재 인발 공정의 코너 채움에 관한 연구)

  • 김용철;김동진;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.143-152
    • /
    • 2000
  • The comer filling in shaped drawing process is an important characteristic, unlike the round drawing. It has also influence on the dimensional accuracy of the product. In this study, therefore, the shaped drawing process has been simulated by the three dimensional rigid-plastic finite element method in order to investigate the effect of process variables such as reduction in area and semi-die angle to the corner filling. The artificial neural network has also been introduced to reduce the number of simulations. To verify the results of simulations, experiments have been performed on the real industrial products. According to the results, the main process variable on the corner filling is the combination of semi-die angle in the irregular shaped drawing processes, but in the case of regular shaped drawing processes, reduction in area has great influence on the corner filling.

  • PDF

A Study on the Corner Filling in the Drawing of the Rectangular Rod (사각재 인발 공정의 코너채움에 관한 연구)

  • Kim Y. C.;Kim Y. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.56-59
    • /
    • 1999
  • In the present study, in order to investigate the effect of the corner filling in the drawing of the rectangular rod from a round bar, the drawing of the square rod from a round bar has been simulated by using rigid-plastic finite element method and artificial neural network has been introduced to reduce the number of simulation. The experimental investigation has been also implemented to verify the efficiency of the application of results of present and previous study. According to the results of present and pervious study, the combination of semi-die angle gives a great effect on the corner filling in case of the irregular shaped drawing process, but, in case of the regular shaped drawing process, the main process variable on the corner filling is reduction in area.

  • PDF

Analysis of the Effect of Strain Hardening on Central Bursting Defects in Strip Drawing (판재 인발 에서 내부결함 에 대한 변형경화 의 영향 에 관한 해석)

  • 최재찬;김병민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.677-682
    • /
    • 1985
  • 극치해석적인 상계정리를 기초로 하여, 평면변형 인발에서 발생하는 내부결함(central bursting)을 예측하기 위해 중심에서 공동(voids)을 가진 금속에 대해 비례흐름(proportional flow)과 내부결 함의 흐름을 비교하여 해석하였다. 이 결함을 촉진시키는 공정조건에 대한 판정식(criterion)을 변형경화 금속에 대해 유도하였다. 공동을 가진 금속은 공동들을 축소시키기 위해 정상적인 재 료(sound material)의 흐름과 동일 방법으로 흐를 수 있으며, 경우에 따라서는 내부결함을 확장 하기 위해 흐를 수도 있다. 본 연구에서는 다이의 경사각, 단면감소율 및 마찰 등의 어떤 공정 변수 영역에서 중심축 상에 많은 공동을 가진 변형경화 금속에서도 내부결함이 발생할 수 있다는 것이다.

Design of The Tool Horn for Dies Needle Horning Manufacturing (인발다이 가공을 위한 니들 호닝기용 툴혼 설계)

  • Yoon H.J.;Yoon Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.231-232
    • /
    • 2006
  • Ultrasonic machining technology has been developed over recent years for manufacturing the quality-assured precision parts fur several industrial application such as optics, semiconductors, aerospace and automobile application. Ultrasonic needle horning is widely used in cutting(drilling) of non-conductive, brittle workpiece materials. This paper intends to understanding of the basic mechanism of ultrasonic needle horning. And frequency analysis program is used to easily predict the natural frequency of ultrasonic vibration cutting tools.

  • PDF