• Title/Summary/Keyword: 다이아몬드 카본상 박막

Search Result 41, Processing Time 0.022 seconds

Investigation of Amorphous Carbon Film Deposition by Molecular Dynamic Simulation (분자 동역학 전산모사에 의한 비정질 탄소 필름의 합성거동 연구)

  • 이승협;이승철;이규환;이광렬
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Deposition behavior of hard amorphous carbon film was investigated by molecular dynamic simulation using Tersoff potential which was suggested for the interaction potential between carbon atoms. When high energy carbon atoms were collided on diamond (100) surface, dense amorphous carbon film could be obtained. Physical properties of the simulated carbon film were compared with those of the film deposited by filtered cathodic arc process. As in the experimental result, the most diamond-like film was obtained at an optimum kinetic energy of the incident carbon atoms. The optimum kinetic energy was 50 eV, which is comparable to the experimental observation. The simulated film was amorphous with short range order of diamond lattice. At the optimum kinetic energy condition, we found that significant amount of carbon atom were placed at a metastable site of distance 2.1 $\AA$. By melting and quenching simulation of diamond lattice, it was shown that this metastatic peak is Proportional to the quenching rate. These results show that the hard and dense diamond-like film could be obtained when the localized thermal spike due to the collision of high energy carbon atom can be effectively dissipated to the lattice.

The control of the structure and properties of tetrahedral amorphous carbon films prepared by Filtered Vacuum Arc (FVA 증착법에 의해 합성된 ta-C 박막의 구조 및 물성 제어)

  • 이철승;신진국;김종국;이광렬;윤기현
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • Tetrahedral amorphous carbon(ta-C) films were deposited by the filtered vacuum arc(FVA) process. The FVA process has many advantages such as high ionization ratio and the ion energy, which is suitable for dense amorphous carbon film deposition. However, the energy of the carbon ion cannot be readily controlled by manipulating the arc source parameters. In order to control the film properties in wide range, we investigated the dependence of the film properties on the substrate bias voltage. The mechanical properties and the density of the film exhibit the maximum values at about -100 V of the bias voltage. The maximum values of hardness and density were respectively 54$\pm$3 GPa and 3.6$\pm$0.4 g/㎤, which are 3 to 5 times higher than those of the films deposited by RF PACVD or ion beam process. The details of the atomic bond structure were analysed by Raman and NEXAFS spectroscopy. The change in the film properties for various bias voltages could be understood in the view of the $sp^2$ and $sp^3$ bond fraction in the deposited films.

다층 실리콘 함유 DLC 박막에서의 마모 거동 연구

  • 김종국;나종주;이구현
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.54-54
    • /
    • 2001
  • End hall type 이온건을 이용하여 다층 다이아몬드상 차본(DLC) 필름을 M2 steel 기판 위에 합성하였다. 다충 다이아몬드상 카본 필름은 순수 DLC 필름과 실라콘 함유 D DLC 필름의 조합으로 구성되어 있으며, $C_6H_6$ 및 수소 희석된 30% 를 사용하여 증착 하였다. 생성된 DLC 박막의 조성은 $C_6H_6$$SiH_4$ 가스의 비를 조절함으로써 변화시켰으며, 250 kHz의 고주파 전원을 바이어스 전원으로 사용하여 박막의 물성을 변화시켰다. DLC 박막의 두께와 다층의 구조 및 종류(2충, 4충)는 코팅 공정의 실험 변수로서 변화시켰다. 직경 3 mm의 루비볼을 사용하여 ball-on-disk 방식으로 마모 시험을 행하였으며, 하중은 490 g, 500 rpm에서 상대습도를 5 % 이하와 80 % 이상으로 변화시켜가며 시행하였다. 100,000 cycle 회전 후 측정된 시편의 마모상태는 5 % 이하의 습 도에서 4층 구조의 박막이 2충 구조의 박막보다 2배 이상 낮은 마모률을 보였으며 그 값은 각각 $2~3{\times}\;10^{-8}\;\textrm{mm}^3/rev$$1~2{\times}\;10^{-7}\;\textrm{mm}^3/rev$로 나타내었다. 80% 이상의 습도에서도 마모률의 변화는 저습에서의 경우와 유사하였다. 또한 Si함유 DLC 다층 박막이 저습 및 고습에서 더욱 안정한 마찰 마모 거동을 보였다.

  • PDF

Stability and Adhesion of Diamond-like Carbon Film under Micro-tensile Test Condition (미소 인장시험을 통한 다이아몬드상 카본 박막의 안정성 및 접합력 평가)

  • Choi Heon Woong;Lee Kwang-Ryeol;Wang Rizhi;Oh Kyu Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.175-181
    • /
    • 2004
  • We investigated the stability of the DLC film coated on 304 stainless steel substrate by Radio frequency assisted chemical vapor deposition method. Fracture and spallation behaviour of the coating was observed during micro-tensile test of the fil $m_strate composite. As the tensile deformation progressed, the cracks of the film were observed in the perpendicular direction to the tensile axis. Further deformation resulted in the plastic deformation with $45^{\circ}$ slip bands on the substrate surface. Spallation of the film occurred with the plastic deformation, which was initiated at the cracks of the film and was aligned along the slip directions. We found that both the cracking and the spallation behaviors are strongly dependent on the pre-treatment condition, such as Ar plasma pre-treatment. The spallation of the film was considerably suppressed in an optimized condition of the substrate cleaning by Ar glow discharge. We observed the improved stability with increasing duration of Ar plasma pre-treatment.nt.