• 제목/요약/키워드: 다이아몬드공구

검색결과 144건 처리시간 0.098초

다이아몬드 코어드릴 공정의 구멍가공 특성과 모델링 (Drilling Characteristics and Modeling of Diamond Core Drilling Processes)

  • 윤관우;정성종
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.95-103
    • /
    • 2008
  • Diamond core drills are applied to drill difficult-to-cut materials. This paper proposes basic understanding of ceramic drilling mechanics and characteristics of main factors affecting tool life, tool wear, cutting force, and chipping thickness. In contrast to conventional drilling, the core drilling process make deep grooves on the workpiece. One difficulty of it is the evacuation of chips from the drilled groove. As the drilling depth increases, an increased amount of chips tend to cluster together and clog the groove. Eventually severe wear develops and diamond grits are separated from the drill body. To relieve the clogging problem and to evacuate chips from the groove easily, the helical drilling process is applied for the core drilling process. To analyze drilling characteristics and derive optimal drilling conditions, tool life, tool wear, cutting force, and chipping thickness are quantified through the monitoring system and the Taguchi method. Mathematical models for the tool life and chipping thickness are derived from the response surface method. Optimal drilling database has been constructed through the experimental models.

다이아몬드 공구를 이용한 미세 홈 가공 (Micro Groove Cutting Using Diamond Tools)

  • 최영재;송기형;이석우;최헌종
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.181-187
    • /
    • 2014
  • Micro patterns are used to maximize the performance and efficiency of the product in many industries such as energy, display, printing, biology, etc. Nowadays, the fabrication technology for micro patterns has been developed in various ways such as photolithography, laser machining, electrical discharge machining and mechanical machining. Recently, mechanical machining the size of smaller than 1 micrometer could be tried, because the technology related to the machining was developed brilliantly. This paper shows the experiments using cutting processes in order to fabricate the micro pattern. Micro patterns of the size of several micrometers were machined by the diamond tools of two different shape, the deformation and generation of burr were investigated.

철강재료의 다이아몬드절삭에 있어서 단속절삭가공법의 적용에 의한 공구마모억제 (Control of Tool Wear in Diamond Cutting of Steels by Intermittent Cutting Method)

  • 송영찬;근진건태랑;박천홍;삼협준도
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.40-46
    • /
    • 2008
  • Ultraprecision cutting of steels with geometrically defined single crystal diamond tools is handicapped by excessive tool wear. This paper presents a new approach to suppress the wear of single crystal diamond tool in cutting of steels. In general, it is said that the wear of diamond tool is caused by chemically reactive wear under high temperature and high pressure conditions. In order to suppress such chemical reactions, the time of contact between the diamond tool and the steel work in cutting was controlled by employing the intermittent cutting method such as fly-cutting. Series of intermittent cutting experiments have been carried out to control the tool-work contact time by changing one cycle of cutting length and cutting speed. The experimental results were shown that the tool wear was much dependent on the contact time regardless of the cutting speed, and that the wear was much suppressed by reducing the tool-work contact time. It is expected that the steels can be successfully cut with a single crystal diamond tool by controlling the contact time.

다이아몬드 터닝머신에서 다중점 B 축 제어 가공법을 통한 표면거칠기 향상 (Improvement in Surface Roughness by Multi Point B Axis Control Method in Diamond Turning Machine)

  • 김영복;황연;안중환;김정호;김혜정;김동식
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.983-988
    • /
    • 2015
  • This paper details a new ultra-precise turning method for increasing surface quality, "Multi Point B Axis Control Method." Machined surface error is minimized by the compensation machining process, but the process leaves residual chip marks and surface roughness. This phenomenon is unavoidable in the diamond turning process using existing machining methods. However, Multi Point B axis control uses a small angle (< $1^{\circ}$) for the unused diamond edge for generation of ultra-fine surfaces; no machining chipping occurs. It is achieved by compensated surface profiling via alignment of the tool radial center on the center of the B axis rotation table. Experimental results show that a diamond turned surface using the Multi Point B axis control method achieved P-V $0.1{\mu}m$ and Ra 1.1nm and these ultra-fine surface qualities are reproducible.

Multi Layer 다이아몬드 전착 공구의 가공특성에 관한 연구 (Processing Characteristics of Multi Layer Diamond Electrodeposition Tool)

  • 차승환;양동호;이상협;이종찬
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.22-28
    • /
    • 2022
  • In the semiconductor and display component industries, the use of ceramic materials, which are high-strength materials, is increasing for ensuring durability and wear resistance. Among them, alumina materials are used increasingly. Alumina materials are extremely difficult to process because of their high strength; as such, research and development in the area of mineral material processing is being promoted actively to improve their processing. In this study, the processability of an electrodeposition tool is investigated using the electrodeposition method to smoothly process alumina materials. Furthermore, processing is conducted under various processing conditions, such as spindle speed, feed speed, and depth of cut. In addition, the processing characteristics of the workpiece are analyzed based on the tooling.

천연 다이아몬드 인선형태에 의한 Al 합금의 경면절삭에 관한 연구 (Study on mirror-like surface machining of Al alloy with edge form of single crystal diamond tools)

  • 김정두
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1515-1522
    • /
    • 1990
  • 본 연구에서는 천연다이아몬드의 인선형상을 R형과 S형으로 구분하여 제작하 고 미세이송과 절삭속도 변화를 주어 이에 얻어지는 표현거칠기, 칩 생성기구 및 경면 성을 검토하였다.

단결정 다이아몬드 공구에 의한 Corner Cube 가공 시, 형상정밀도에 미치는 동 도금층의 경도의 영향 (Plating hardness and its effect to the form accuracy in shaping of corner cube on cu-plated steel plate using a single diamond tool)

  • 이준용;김창호;서충완
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.64-69
    • /
    • 2014
  • This article presents machining experiments to assess the relationship between the profile accuracy and the workpiece hardness using a natural diamond tool on an ultra-precision diamond turning machine. The study is intended to secure a corner cube prism pattern for reflective film capable of high-quality outcomes. The optical performance levels and edge images of corner cubes having various hardness levels of the copper-coated layer on a carbon steel plate are analyzed. The hardness of the workpiece has a considerable effect on the profile accuracy. The higher the hardness of the workpiece, the better the profile accuracy and the worse the edge wear of the diamond tool.

절인반경차이에 따른 연질재료의 정밀가공 특성 연구 (A Study on the Precision Cutting Characteristics for Different Cutting Edge Radii in Ductile Material)

  • 권용기
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.75-80
    • /
    • 2000
  • This paper deals with the precision cutting characteristics of mono-crystal diamonds poly-crystal diamonds and tungsten carbide tool on ductile material. The cutting tests were carried out under various uncut chip areas and 20${\mu}{\textrm}{m}$ depth of engagement. The machinability in precision machining was discussed from the viewpoints of the normal cutting forces and the surface roughness of the workpiece. As the feed rate decreases the normal force difference for cutting edge radii appears to large. In various cutting edge radii the surface roughness difference when cut the copper which is ductile material than the aluminium alloy is large. As the same cutting condition the hardness value on cut surface with the diamond tool appears to be smaller than that of the tungsten carbide tool.

  • PDF

초정밀 공작기계를 이용한 미소부품의 가공특성 (Machining Characteristics of Micro-parts using the Ultra-precision Machine Tools)

  • 이재종;이응숙;제태진;이선우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.858-861
    • /
    • 2001
  • As the application fields of micro parts that are micro endo-scope, PDA, and tele-communication had been extended, there are required the micro machine tools and MEMS in order to machining for those parts. In order to machining of the micro parts, the micro machining center is very effective. The micro machining center had some advantages that are lower cost, higher accuracy, and lower required powers than existing machine tools for machining of micro parts. In this study, in order to analyze the machining characteristics and its application possibility of the developing micro machining center with 60,000rpm rotations, 0.1$\mu\textrm{m}$ resolutions, and 80 50 50mm sliding unit, the machining experiment had been executed. In this experimental machining, 0.1~ 0.5mm endmills are used to machining the micro cap and tele-communication's parts. In the future, experimental results will be adapted to the micro-machining center.

  • PDF