• Title/Summary/Keyword: 다이버시티

Search Result 729, Processing Time 0.024 seconds

A Novel Channel Estimation Method Using Pilot Channels for Frequency-Interleaved MC-CDMA Systems (주파수 인터리빙된 MC-CDMA 시스템에서 파일럿 채널을 이용한 새로운 채널 추정 기법)

  • Cho Young-bo;Lee Jae-Gu;Oh seong-Mok;Kang Chang-eon;Hong Dae-sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1186-1192
    • /
    • 2005
  • In this paper, we propose a novel channel estimation method based on pilot channel in a frequency interleaved multicarrier code division multiple access (MC-CDMA). Using the chip interleaving (CI) technique in the frequency domain make it possible to achieve higher frequency diversity gain than the system with conventional symbol interleaving. However, in CI-MC-CDMA systems, a pilot channel-based channel estimation (PCCE) cannot be applied because the orthogonality between pilot symbols and the data symbol is not maintained. The proposed method alters the system structure in order to maintain orthogonality between data and pilot channels over two consecutive subcarriers. Therefore, it can obtain accurate channel state information (CSI) in CI-MC-CDMA.

Improved OFDM System with Carrier Interferometry Codes in Highly Dispersive Fading Channels (높은 지연 페이딩 채널에서 반송파 간섭신호를 이용한 개선된 OFDM 시스템)

  • Chung, Yeon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.378-383
    • /
    • 2004
  • Orthogonal Frequency Division Multiplexing (OFDM) transmits high-speed data by splitting the transmission bandwidth into a number of subcarriers. The bandwidth of each subcarrier is ensured to be smaller than the coherence bandwidth. This paper presents an OFDM system incorporated with the Carrier Interferometry (CI) codes to improve the performance by enhancing frequency diversity effect. The performances of CI-OFDM with multilevel modulations are investigated in highly dispersive fading channels. For the investigation of performance improvement of CI-OFDM, a simulator has been developed using a well-known SPW simulation platform. The simulation results show that the CI-OFDM provides both performance improvement and robustness against dispersive fading channel behavior. The performance of CI-OFBM with multilevel modulations demonstrates that CI-OFDM outperforms a traditional OFDM system, particularly in highly dispersive channels. With a relatively large delay spread of 151㎱ compared to the guard interval of 800㎱, CI-OFDM provides a BER of 10$^{-3}$ if sufficient signal power is present.

Performances of wireless ATM cell transmission with partial concatenated coding (무선 ATM셀 전송을 위한 부분 연쇄 부호화 기법의 성능분석)

  • 이진호;김태중;이동도;안재영;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.2014-2026
    • /
    • 1997
  • In this paper, the performances of wireless asynchronous transfer mode (ATM) cell transmission in mobile work are analyzed. We adopt 16Star QAM as amodulation technique in wireless channel and considered Reed-Solomon, convolutional, and concatenated coding to improve the error rate performances, and also proposed the Partial Concatenated Coding (PCC) technique as UEP(unequal error protection) code for efficient transmission of ATM cell in the air interface. We consider Doppler's effect, Rician fading, and diversity technique of maximal-ratio combining (MRC) for mobile channel model. For performance measure, we analyze bit error rate, ATM cell loss probability, ATM cell error probability, and network performances of ATM cell transmission delay and throughput. The numerical results show that the adoption of PCC is a prospective way for the evolution of future wireless ATM network on mobile environment.

  • PDF

Opportunistic Packet Scheduling and Media Access Control for Wireless LANs (무선 LAN을 위한 opportunistic 패킷 스케줄링 및 매체접근제어)

  • Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.191-197
    • /
    • 2008
  • For the efficient transmission of burst data in the time varying wireless channel, opportunistic scheduling is one of the important techniques to maximize multiuser diversity gain. In this paper, we propose a distributed opportunistic scheduling scheme for wireless LAN network. A proportional fair scheduling, which is one of the opportunistic scheduling schemes, is used for centralized networks, whereas we design distributed proportional fair scheduling (DPFS) scheme and medium access control with distributed manner. In the proposed DPFS scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed DPFS using extensive simulation and simulation results show that DPFS obtains higher network throughput than conventional scheduling schemes and has a flexibility to control the fairness and throughput by controlling the system parameter.

An Efficient Vehicular Ad-hoc Networks and Ranging System Using Spread Spectrum Multi-carrier Modulation Scheme (SS 다중반송파 변조방식을 이용한 효율적인 차량 에드혹 네트워크 거리측정 기법)

  • Kim, Young-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.554-561
    • /
    • 2009
  • In this paper, we propose a novel Vehicular Ad-hoc Network(VANET) which includes communication and ranging features, using Spread Spectrum(SS) multi-carrier modulation scheme. In existing methods, a spread spectrum technique was used to communicate with other vehicles and raging was possible by detecting phase difference between transmission/reception of the PN signal. However, the use of high-speed PN signals is mandatory to detect possible errors of phase difference and to increase the analysis capacity. In the proposed system, multi-carrier modulation scheme was used as solution of mentioned problem. The multi-carrier modulation scheme uses smaller PN signal and chip-rate than the single-carrier modulation, so it is possible to send multiple carrier waves using the same frequency range. This technique (multiple carrier waves) allows to have the Equal Gain Combing (EGC) diversity effect, providing better result in phase difference error detection and raging accuracy.

A Multi-Antenna Mobile Measurement System for DTV Coverage Measurement (DTV 커버리지 측정을 위한 다중 안테나 이동측정시스템)

  • Jeong, Young-Seok;Yang, Hae-Sool
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.85-94
    • /
    • 2013
  • This paper presents a novel mobile measurement system with multi antennas which enable mobile measurement as well as fixed measurement with telescope mast. Proposed system installed 4 omni directional antennas for the space diversity process and one directional log periodic antenna for the simultaneous conventional fixed measurement. Whole antenna systems are connected to the custom DTV channel analyzers with Ethernet networks respectively and processed by the main controller to calculate real time average receive levels. To prove the performance of proposed system, the typical receive models are categorized as 3 area types - open area, building area and house area, and then intensive field tests were performed through mobile and fixed measurement phases. With these measurement data, the relationships between mobile and fixed measurement are analyzed, and the concept of compensation factor is proposed to assume the average receive level of signal. The field test is fulfilled as a co-work with public broadcasters and the proposed system is applied to the intensive coverage measurement projects for metropolitan areas by the korean government agencies.

Cross-Layer Optimized Resource Allocation Scheme for OFDMA based Micro Base Stations (OFDMA 기반 마이크로 기지국을 위한 계층간 최적화된 자원할당 기법)

  • Cho, Sung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, a joint PHY-MAC layer optimized resource allocation scheme for OFDMA based micro base stations is investigated. We propose cross-layer optimized two-stage resource allocation scheme including cross-layer functional description and control information flow between PHY-MAC layers. The proposed two-stage resource allocation scheme consists of a user grouping stage and a resource allocation stage. In the user grouping stage, users are divided into a macro base station user group and a micro base station user group based on the PHY-MAC layer characteristics of each user. In the resource allocation stage, a scheduling scheme and an allotment of resources are determined. In the proposed scheme, diversity and adaptive modulation and coding (AMC) schemes are exploited as schedulers. Simulation results demonstrate that the proposed scheme increases the average cell throughput about 40~80 % compared to the conventional system without micro base stations.

Performance of IEEE 802.16j using Cooperative Relaying in Correlated Shadow Fading (음영감쇄 환경에서의 IEEE 802.16j 상호 협조 중계 방식 성능 평가)

  • Ha, Dong-Ju;Kim, Suk-Chan;Park, Dong-Chan;Kim, Young-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.47-53
    • /
    • 2007
  • The purpose of IEEE 802.16j is to extend coverage and to enhance throughput by using relay station additionally to conventional IEEE 802.16e . The cellular system experiences performance degradation at the cell edge due to pathloss, shadow and multipath fading. We can get advantage of spatial diversity gain by using relays more than two cooperatively in the IEEE 802.16j system. Cooperative relaying using space-time code provides better performance under multipath fading and has more robustness against the shadow fading than single relaying. In this paper, we investigate the performance of IEEE 802.16j using cooperative relaying by link level simulation. We also show that the cooperative relaying system achieves better performance than the conventional single relaying system. We apply realistic shadow model considering correlations between shadow fadings of different relaying paths. It is shown that the performance of the system depends highly on the spatial location of relay stations.

Performance Evaluation of Fill Rate Quasi-orthogonal STF-OFDM with DAC-ZF Decoder for Four Transmit Antennas MIMO System (4개의 송신 안테나 MIMO 시스템을 위한 DAC-ZF 수신 기법과 결합된 Full Rate 준직교 QOSTF-OFDM 관한 연구)

  • Jin, Ji-Yu;Ryu, Kwan-Woong;Park, Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1092-1100
    • /
    • 2006
  • In this paper, we propose a full rate quasi-orthogonal space-time-frequency block coded orthogonal frequency division multiplexing(QOSTF-OFDM) that can achieve full symbol rate with four transmit antennas. Sincr: the proposed QOSTF-OFDM can not achieve full diversity, we use diversity advantage collection with zero forcing (DAC-ZF) decoder to compensate the diversity loss at receive side. At the same frequency efficiency, compared with linear orthogonal space-time codes which can not achieve full rate with four transmit antennas over complex constellations, low level modulation can be employed by proposed scheme due to its full rate, i.e., modulation advantage can be achieved. Due to modulation advantage and collected diversify advantage, the proposed scheme exhibits better BER performance than other orthogonal schemes.

An FPGA Implementation of an MML-DFE for Spatially Multiplexed MIMO Systems (공간다중화 MIMO 시스템을 위한 MML-DFE기법의 FPGA 구현)

  • Im, Tae-Ho;Lee, Kyu-In;Park, Chang-Hwan;Jeong, Ki-Cheol;Yu, Sung-Wook;Kim, Jae-Kwon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1167-1175
    • /
    • 2006
  • The ML-DFE(Maximum Likelihood-Decision Feedback Equalization) can be viewed as either a suboptimal signal detection method for reducing hardware complexity of ML or an enhanced detection method for reducing the effect of error propagation of SIC(Successive Interference Cancellation) in spatially multiplexed MIMO systems such as V-BLAST. The ML-DFE can achieve a higher diversity in rich scattering environments as well as reducing the error propagation effect by combing ML decoding with the DFE. In this paper, an MML-DFE(Modified Maximum Likelihood-Decision Feedback Equalization) is proposed to reduce the hardware complexity of the ML-DFE, without compromising performance. It is shown by FPGA implementation that the proposed MML-DFE can achieve the same performance as the ML-DFE with significantly reduced hardware complexity.