• 제목/요약/키워드: 다분야 최적 설계

검색결과 63건 처리시간 0.027초

가로세로비가 큰 항공기 날개의 다분야 통합 최적설계를 위한 자동화 공력-구조 연계 시스템 개발 (Development of an Automated Aero-Structure Interaction System for Multidisciplinary Design Optimization for the Large AR Aircraft Wing)

  • 조대식;유재훈;조창열;박찬우
    • 한국항공우주학회지
    • /
    • 제38권7호
    • /
    • pp.716-726
    • /
    • 2010
  • 본 연구에서는 공기역학과 비선형 구조해석을 통합한 다분야 최적설계 최적화(MDO)프레임웍을 사용하여 항공기 날개의 설계를 수행하였다. MDO 문제 중 해결해야할 가장 큰 문제인 자동화를 해결하여 전 과정이 자동화되게 하였다. 공력해석은 FLUENT를 사용하였으며 이를 위한 격자는 CATIA의 파라미터 모델과 Gambit을 사용하여 자동으로 생성되도록 하였다. 전산구조해석을 위한 격자는 CATIA의 파라미터 모델과 NASTRAN- FX의 비주얼 베이직 스크립트를 사용하여 자동으로 생성되도록 하였다. 구조해석은 비선형성을 고려하여 ABAQUS를 사용하였다. 최적화 방법은 전역해를 구하기 유리한 반응표면법을 사용하였다. 목적함수는 날개 무게의 최소화이고 제약 조건은 양항비, 날개의 변위 그리고 구조응력량으로 정하였다. 그리고 설계변수는 가로세로비, 테이퍼비, 후퇴각 그리고 상하스킨의 두께로 정의하였다. 최적화 설계결과는 본 자동화 MDO프레임웍이 성공적으로 구성되었음을 보여주었다.

유연 날개의 확률기반 최적 설계 (Reliability Based Design Optimization of the Flexible Wing)

  • 이재훈;김수환;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.187-190
    • /
    • 2005
  • In this study, the reliablility based design optimization is peformed for an aircraft wing. The flexiblility of the wing was assumed by considering the interaction modeled by static aeroelasticity between aerodynamic forces and the structure. For a multidisciplinary design optimization the results of aerodynamic analysis and structural analysis were included in the optimization formulation. The First Order Reliability Method(FORM) was employed to consider the uncertainty of the designed points.

  • PDF

분야간 연성된 설계변수의 처리를 통한 다분야통합최적설계 방법 (A Method of Multidisciplinary Design Optimization via Coordination of Interdisciplinary Design Variables)

  • 정희석;이형주;이종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.380-385
    • /
    • 2001
  • The paper presents a new multidisciplinary design optimization architecture using optimal sensitivity and coordination of interdisciplinary design variables. Original design problem is decomposed into a number of sub-problems that represent individual engineering analysis. The coupled effects between sub-problems are computed by interdisciplinary design variables. System level coordination is determined by optimal parameter sensitivity calculated by finite difference method. The proposed. MDO strategy is applied to a simplified model of rotorcraft blade design associated with structures and aerodynamic disciplines.

  • PDF

자동차 충돌문제에 MDO를 적용하기 위한 시스템 해석 방법 개발 (Development of System Analysis for the Application of MDO to Crashworthiness)

  • 신문균;김창희;박경진
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.210-218
    • /
    • 2003
  • MDO (multidisciplinary design optimization) technology has been proposed and applied to solve large and complex optimization problems where multiple disciplinaries are involved. In this research. an MDO problem is defined for automobile design which has crashworthiness analyses. Crash model which are consisted of airbag, belt integrated seat (BIS), energy absorbing steering system .and safety belt is selected as a practical example for MDO application to vehicle system. Through disciplinary analysis, vehicle system is decomposed into structure subspace and occupant subspace, and coupling variables are identified. Before subspace optimization, values of coupling variables at given design point must be determined with system analysis. The system analysis in MDO is very important in that the coupling between disciplines can be temporary disconnected through the system analysis. As a result of system analysis, subspace optimizations are independently conducted. However, in vehicle crash, system analysis methods such as Newton method and fixed-point iteration can not be applied to one. Therefore, new system analysis algorithm is developed to apply to crashworthiness. It is conducted for system analysis to determine values of coupling variables. MDO algorithm which is applied to vehicle crash is MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Then, structure and occupant subspaces are independently optimized by using MDOIS.

독립적 하부 시스템에 의한 다분야 통합 최적설계 (Mathematical Validation of Multidisciplinary Design Optimization Based on Independent Subspaces)

  • 신문균;박경진
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.109-117
    • /
    • 2004
  • Optimization has been successfully applied to systems with a single discipline. As many disciplines are involved in coupled fashion, MDO (multidisciplinary design optimization) technology has been developed. MDO algorithms are trying to solve the coupled aspects generated from interdisciplinary relationship. In a general MDO algorithms, a large design problem is decomposed into small ones which can be easily solved. Although various methods have been proposed for MDO, the research is still in the early stage. This research proposes a new MDO method which is named as MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Many real engineering problems consist of physically separate components and they can be independently designed. The inter-relationship occurs through coupled physics. MDOIS is developed for such problems. In MDOIS, a large system is decomposed into small subsystems. The coupled aspects are solved via system analysis which solves the coupled physics. The algorithm is mathematically validated by showing that the solution satisfies the Karush-Kuhn-Tucker condition.

웹 서비스 기반 MDO 시스템 (Web Services-based Multidisciplinary Design Optimization System)

  • 이호준;이재우;이정욱
    • 한국항공우주학회지
    • /
    • 제35권12호
    • /
    • pp.1121-1128
    • /
    • 2007
  • 다분야 통합 최적설계(MDO)는 여러 설계분야가 복잡하게 얽혀서 설계가 진행되어야 하는 항공기나 우주발사체등의 설계에 매우 유용하게 적용되고 MDO 시스템은 다양한 설계 분야의 통합적이고 동시적인 해석 및 설계 최적화를 위한 통합 환경 또는 시스템이다. MDO 시스템은 이기종의 환경에서 분산되어있는 다양한 해석 코드 및 최적화 코드, CAD, DBMS, GUI등의 자원들을 통합하고 효율적으로 사용할 수 있어야하며 협업설계환경을 제공해야한다. 본 논문에서는 웹 서비스 기반의 글로버스 툴킷을 이용해 설계자원들을 통합하고 워크플로우, 에이전트 등의 자동화 기술을 이용해 유기적인 자동실행을 제공하며 웹 유저 인터페이스를 통해 협업설계환경을 제공하는 웹 서비스 기반 MDO 시스템의 구축방안을 제시한다.

효율적 분산협동최적설계를 위한 병렬처리 기반 분해 기법 (Parallel Processing Based Decompositon Technique for Efficient Collaborative Optimization)

  • 박형욱;김성찬;김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.883-890
    • /
    • 2001
  • In practical design studies, most of designers solve multidisciplinary problems with large size and complex design system. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder the original design processes to minimize total computational cost. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

진동저감을 위한 드럼세탁기 현가시스템의 다분야통합최적설계 (Multidisciplinary Design Optimization of Suspension System for Vibration Reduction of Drum Type Washer)

  • 이태희;현상학;유홍희;최동훈;전시문;김동원;김영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.429-432
    • /
    • 2004
  • Multidisciplinary design optimization technique is applied to drum type washer in order to minimize the vibration of the cabinet. Dynamic analysis and structural analysis are carried out by using commercial programs to obtain the reliable responses. Analysis models are compared to the experimental responses and finally validated for further design. Two commercial programs are integrated by the design framework EMDIOS that provides interfaces to conveniently link between analyzers and performs design optimization. In this research we could obtain an optimum design that reduces the magnitude of amplitude by about 33% compared with the original design.

  • PDF

다분야통합최적설계 방법론의 병렬처리 성능 분석 (Performances of Multidisciplinary Design Optimization Methodologies in Parallel Computing Environment)

  • 안문열;이세정
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1150-1156
    • /
    • 2007
  • Multidisciplinary design optimization methodologies play an essential role in modern engineering design which involves many inter-related disciplines. These methodologies usually require very long computing time and design tasks are hard to finish within a specified design cycle time. Parallel processing can be effectively utilized to reduce the computing time. The research on the parallel computing performance of MDO methodologies has been just begun and developing. This study investigates performances of MDF, IDF, SAND and CO among MDO methodologies in view of parallel computing. Finally, the best out of four methodologies is suggested for parallel processing purpose.