• Title/Summary/Keyword: 다변수 분석

Search Result 849, Processing Time 0.027 seconds

Coastal Shallow-Water Bathymetry Survey through a Drone and Optical Remote Sensors (드론과 광학원격탐사 기법을 이용한 천해 수심측량)

  • Oh, Chan Young;Ahn, Kyungmo;Park, Jaeseong;Park, Sung Woo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.162-168
    • /
    • 2017
  • Shallow-water bathymetry survey has been conducted using high definition color images obtained at the altitude of 100 m above sea level using a drone. Shallow-water bathymetry data are one of the most important input data for the research of beach erosion problems. Especially, accurate bathymetry data within closure depth are critically important, because most of the interesting phenomena occur in the surf zone. However, it is extremely difficult to obtain accurate bathymetry data due to wave-induced currents and breaking waves in this region. Therefore, optical remote sensing technique using a small drone is considered to be attractive alternative. This paper presents the potential utilization of image processing algorithms using multi-variable linear regression applied to red, green, blue and grey band images for estimating shallow water depth using a drone with HD camera. Optical remote sensing analysis conducted at Wolpo beach showed promising results. Estimated water depths within 5 m showed correlation coefficient of 0.99 and maximum error of 0.2 m compared with water depth surveyed through manual as well as ship-board echo-sounder measurements.

중풍의 증형 진단을 위한 판별모형

  • Sin, Yang-Gyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.283-287
    • /
    • 1996
  • 본 연구는 중풍에서의 한의학의 풍부한 임상자료들에 대한 객관적이고도 논리적인 자료처리방법 및 변증으로부터 증형을 추론할 수 있는 통계적 방법을 연구하고자 한다. 중풍 전문의에 의해 수집된 65명의 환자들의 임상자료로부터 다변량 자료 분석의 하나인 판별분석을 이용하여 증후로부터 증형을 판단할 수 있는 수리적 판별모형을 구축하였다. 구축된 모형은 중풍 전문가 시스템을 개발하기 위한 기초가 될 것이다.

  • PDF

Multivariate Analysis for Clinicians (임상의를 위한 다변량 분석의 실제)

  • Oh, Joo Han;Chung, Seok Won
    • Clinics in Shoulder and Elbow
    • /
    • v.16 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • In medical research, multivariate analysis, especially multiple regression analysis, is used to analyze the influence of multiple variables on the result. Multiple regression analysis should include variables in the model and the problem of multi-collinearity as there are many variables as well as the basic assumption of regression analysis. The multiple regression model is expressed as the coefficient of determination, $R^2$ and the influence of independent variables on result as a regression coefficient, ${\beta}$. Multiple regression analysis can be divided into multiple linear regression analysis, multiple logistic regression analysis, and Cox regression analysis according to the type of dependent variables (continuous variable, categorical variable (binary logit), and state variable, respectively), and the influence of variables on the result is evaluated by regression coefficient${\beta}$, odds ratio, and hazard ratio, respectively. The knowledge of multivariate analysis enables clinicians to analyze the result accurately and to design the further research efficiently.

Agricultural Product Price Prediction ModelUsing Multi-Variable Data Long Short Term Memory (장단기 기억 신경망을 사용한 다변수 데이터 농산물 가격 예측 모델)

  • Donggon Kang;Youngmin Jang;Joosock Lee;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.451-457
    • /
    • 2024
  • This paper proposes a method for predicting agricultural product prices by utilizing various variables such as price, climate factors, demand, and import volume as data, and applying the Long Short-Term Memory (LSTM) model. The analysis of prediction performance using the LSTM model, which learns the long-term dependencies of time series data, showed that integrating diverse data improved performance compared to traditional methods. Furthermore, even when predicting without price data as a dependent variable, meaningful results were achieved using only independent variables, indicating the potential for further model development. Moreover, it was found that using a multi-variable model could further enhance prediction performance, suggesting that this complex approach is effective in improving the accuracy of cabbage price predictions.

Performance of PCA Algorithm for Multivariate Data Analysis (다변량 데이터 분석을 위한 PCA 알고리즘 구현)

  • Gim, GwiSuk;Shon, Ho Sun;Ryu, Keun Ho;Lee, YoungSung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1264-1266
    • /
    • 2013
  • 다변량 데이터 분석에 주로 사용되는 차원축소 기법 중 하나인 PCA 알고리즘을 직접 구현해보고 기존의 통계분석 프로그램과 그 결과를 비교분석 해보았다. UCI에서 제공하는 유방암 데이터를 이용하여 실험 해본 결과 두 프로그램 모두 같은 주성분을 얻고, Eigenvalue와 variance도 같은 값을 얻었다. 따라서 상용화된 통계패키지를 사용하지 않고도 PCA 알고리즘을 적용하여 차원축소 문제를 해결하고 데이터를 분석 할 수 있다.

Evaluation of the Probability of Detection Surface for ODSCC in Steam Generator Tubes Using Multivariate Logistic Regression (다변량 로지스틱 회귀분석을 이용한 증기발생기 전열관 ODSCC의 POD곡면 분석)

  • Lee, Jae-Bong;Park, Jai-Hak;Kim, Hong-Deok;Chung, Han-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.250-255
    • /
    • 2007
  • Steam generator tubes play an important role in safety because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. For this reason, the integrity of the tubes is essential in minimizing the leakage possibility of radioactive water. The integrity of the tubes is evaluated based on NDE (non-destructive evaluation) inspection results. Especially ECT (eddy current test) method is usually used for detecting the flaws in steam generator tubes. However, detection capacity of the NDE is not perfect and all of the "real flaws" which actually existing in steam generator tunes is not known by NDE results. Therefore reliability of NDE system is one of the essential parts in assessing the integrity of steam generators. In this study POD (probability of detection) of ECT system for ODSCC in steam generator tubes is evaluated using multivariate logistic regression. The cracked tube specimens are made using the withdrawn steam generator tubes. Therefore the cracks are not artificial but real. Using the multivariate logistic regression method, continuous POD surfaces are evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive evaluation of the cracked tubes. Length and depth of cracks are considered in multivariate logistic regression and their effects on detection capacity are evaluated.

  • PDF

Development of integrated drought index(IDI) using remote sensing data and multivariate model (원격탐사자료와 다변량 통계모형을 활용한 통합가뭄지수 개발)

  • Park, Seo-Yeon;Kim, Jong-Suk;Kim, Tae-Woong;Lee, Joo-Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.359-359
    • /
    • 2020
  • 현재 우리나라의 가뭄감시 정보는 기상학적/농업적/수문학적 가뭄이 별도의 지수로 개발되어 다양한 형태의 정보를 생산·제공되고 있다. 각각의 가뭄 지수들 기준 및 특성에 따라 분석되고 있기 때문에 가뭄전문가의 입장에서는 매우 정밀한 가뭄정보를 제공받는 장점이 있는 반면에, 일반 국민들이 가뭄 정보를 받아들이고 이해하는데 어려움이 있어 이를 한눈에 알아볼 수 있는 통합가뭄지도가 필요하며, 통합가뭄도를 제작하기 위해서는 통합가뭄지수가 개발되어야 한다. 본 연구에서는 원격탐사자료를 활용하여 농업적 가뭄지수인 Agricultural Dry Condition Index (ADCI)와 수문학적 가뭄지수인 Water Budget-based Drought Index (WBDI)를 개발하였으며, 기상학적 가뭄지수인 Standardized Precipitation Index (SPI)를 포함하여 기상-농업-수문학적 가뭄지수를 결합한 통합가뭄지수를 산정하였다. 다양한 가뭄지수를 활용하여 개발되었기 때문에 다변량 통계 모형 중 선형 모형인 Principal Component Analysis (PCA)기법과 비선형 모형인 Kernel Entropy PCA, Kernel PCA를 적용하였다. 또한 과거 가뭄사상을 활용하여 산정된 통합가뭄지수 검증을 위해 과거 가뭄사상에 대한 가뭄 발생시기, 심도, 쇠퇴패턴이 양상 평가 및 Intentionally Biased Bootstrap Resampling (IBBR)을 활용한 지수별 민감도 분석을 통해 통합가뭄지수 적용성 평가를 진행하였다.

  • PDF

Application of Statistical Analysis to Analyze the Spatial Distribution of Earthquake-induced Strain Data (지진유발 변형률 데이터의 분포 특성 분석을 위한 응용통계기법의 적용)

  • Kim, Bo-Ram;Chae, Byung-Gon;Kim, Yongje;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.353-361
    • /
    • 2013
  • To analyze the distribution of earthquake-induced strain data in rock masses, statistical analysis was performed on four-directional strain data obtained from a ground movement monitoring system installed in Korea. Strain data related to the 2011 Tohoku-oki earthquake and two aftershocks of >M7.0 in 2011 were used in x-MR control chart analysis, a type of univariate statistical analysis that can detect an abnormal distribution. The analysis revealed different dispersion times for each measurement orientation. In a more comprehensive analysis, the strain data were re-evaluated using multivariate statistical analysis (MSA) considering correlations among the various data from the different measurement orientations. $T_2$ and Q-statistics, based on principal component analysis, were used to analyze the time-series strain data in real-time. The procedures were performed with 99.9%, 99.0%, and 95.0% control limits. It is possible to use the MSA data to successfully detect an abnormal distribution caused by earthquakes because the dispersion time using the 99.9% control limit is concurrent with or earlier than that from the x-MR analysis. In addition, the dispersion using the 99.0% and 95.0% control limits detected an abnormal distribution in advance. This finding indicates the potential use of MSA for recognizing abnormal distributions of strain data.

The influence of chemical water quality on fish trophic guilds, pollution tolerance, and multi-metric ecological health in the main streams of Mangyeong River (만경강 본류의 어류 트로픽 길드, 오염 내성도 및 다변수 생태건강도에 대한 화학적 수질영향)

  • Na, Hyun-Hee;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.8-18
    • /
    • 2019
  • The objectives of this study were to analyze the influence of chemical water quality on fish guilds, pollution tolerance and the multi-metric ecological health, based on the Fish Assessment Index (FAI) in the main stream of Mangyeong River between 2009-2016. The quality of water with specific conductivity, TP, and $NH_4-N$ got worse dramatically in the down region. During the study, a total of 50 species were collected and the most dominant species was Zacco platypus. Also known as tolerant species, accounted 22.9% of the total abundances, thus indicating a trophic degradation. The downstream region (S5) had the highest number of fish external abnormalities, indicating a degradation of ecological health, based on the fish assemblages. Pearson correlation analysis indicated that relative abundance of tolerant fish species and omnivore fish species had a significant positive correlation(r>0.30, p<0.05) with values of BOD, conductivity and $NH_4-N$. Whereas, the relative abundance of the sensitive species and insectivore species had a significant negative relations (r<-0.30, p<0.001) with the parameters. The mean obtained from the multi-metric fish model, based on the FAI of all sites was 47 (n=40). This indicated a "fair condition" in the ecological health, and the downstream regions (S3-S5) were judged as "bad condition", indicating an influence of the chemical degradation on the ecological health.

Development of Real-Time Water Quality Abnormality Warning System for Using Multivariate Statistical Method (다변량 통계기법을 활용한 실시간 수질이상 유무 판단 시스템 개발)

  • Heo, Tae-Young;Jeon, Hang-Bae;Park, Sang-Min;Lee, Young-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.137-144
    • /
    • 2015
  • The purpose of this study is to develop an warning system to detect real-time water quality abnormality using a multivariate statistical approach. In this study, we applied principal component analysis among multivariate data analyses which was used for the correlation between water quality parameters considering the real-time algorithm to determine abnormality in water quality. We applied our approach to real field data and showed the utilization of algorithm for the real-time monitoring to find water quality abnormality. In addition, our approach with Korea Meterological Adminstration database identified heavy rain data due to climate change is one of the most important factors to explain water quality abnormality.