Journal of Korean Society of Coastal and Ocean Engineers
/
v.29
no.3
/
pp.162-168
/
2017
Shallow-water bathymetry survey has been conducted using high definition color images obtained at the altitude of 100 m above sea level using a drone. Shallow-water bathymetry data are one of the most important input data for the research of beach erosion problems. Especially, accurate bathymetry data within closure depth are critically important, because most of the interesting phenomena occur in the surf zone. However, it is extremely difficult to obtain accurate bathymetry data due to wave-induced currents and breaking waves in this region. Therefore, optical remote sensing technique using a small drone is considered to be attractive alternative. This paper presents the potential utilization of image processing algorithms using multi-variable linear regression applied to red, green, blue and grey band images for estimating shallow water depth using a drone with HD camera. Optical remote sensing analysis conducted at Wolpo beach showed promising results. Estimated water depths within 5 m showed correlation coefficient of 0.99 and maximum error of 0.2 m compared with water depth surveyed through manual as well as ship-board echo-sounder measurements.
Journal of the Korean Data and Information Science Society
/
v.7
no.2
/
pp.283-287
/
1996
본 연구는 중풍에서의 한의학의 풍부한 임상자료들에 대한 객관적이고도 논리적인 자료처리방법 및 변증으로부터 증형을 추론할 수 있는 통계적 방법을 연구하고자 한다. 중풍 전문의에 의해 수집된 65명의 환자들의 임상자료로부터 다변량 자료 분석의 하나인 판별분석을 이용하여 증후로부터 증형을 판단할 수 있는 수리적 판별모형을 구축하였다. 구축된 모형은 중풍 전문가 시스템을 개발하기 위한 기초가 될 것이다.
In medical research, multivariate analysis, especially multiple regression analysis, is used to analyze the influence of multiple variables on the result. Multiple regression analysis should include variables in the model and the problem of multi-collinearity as there are many variables as well as the basic assumption of regression analysis. The multiple regression model is expressed as the coefficient of determination, $R^2$ and the influence of independent variables on result as a regression coefficient, ${\beta}$. Multiple regression analysis can be divided into multiple linear regression analysis, multiple logistic regression analysis, and Cox regression analysis according to the type of dependent variables (continuous variable, categorical variable (binary logit), and state variable, respectively), and the influence of variables on the result is evaluated by regression coefficient${\beta}$, odds ratio, and hazard ratio, respectively. The knowledge of multivariate analysis enables clinicians to analyze the result accurately and to design the further research efficiently.
Donggon Kang;Youngmin Jang;Joosock Lee;Seongsoo Lee
Journal of IKEEE
/
v.28
no.3
/
pp.451-457
/
2024
This paper proposes a method for predicting agricultural product prices by utilizing various variables such as price, climate factors, demand, and import volume as data, and applying the Long Short-Term Memory (LSTM) model. The analysis of prediction performance using the LSTM model, which learns the long-term dependencies of time series data, showed that integrating diverse data improved performance compared to traditional methods. Furthermore, even when predicting without price data as a dependent variable, meaningful results were achieved using only independent variables, indicating the potential for further model development. Moreover, it was found that using a multi-variable model could further enhance prediction performance, suggesting that this complex approach is effective in improving the accuracy of cabbage price predictions.
Gim, GwiSuk;Shon, Ho Sun;Ryu, Keun Ho;Lee, YoungSung
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1264-1266
/
2013
다변량 데이터 분석에 주로 사용되는 차원축소 기법 중 하나인 PCA 알고리즘을 직접 구현해보고 기존의 통계분석 프로그램과 그 결과를 비교분석 해보았다. UCI에서 제공하는 유방암 데이터를 이용하여 실험 해본 결과 두 프로그램 모두 같은 주성분을 얻고, Eigenvalue와 variance도 같은 값을 얻었다. 따라서 상용화된 통계패키지를 사용하지 않고도 PCA 알고리즘을 적용하여 차원축소 문제를 해결하고 데이터를 분석 할 수 있다.
Steam generator tubes play an important role in safety because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. For this reason, the integrity of the tubes is essential in minimizing the leakage possibility of radioactive water. The integrity of the tubes is evaluated based on NDE (non-destructive evaluation) inspection results. Especially ECT (eddy current test) method is usually used for detecting the flaws in steam generator tubes. However, detection capacity of the NDE is not perfect and all of the "real flaws" which actually existing in steam generator tunes is not known by NDE results. Therefore reliability of NDE system is one of the essential parts in assessing the integrity of steam generators. In this study POD (probability of detection) of ECT system for ODSCC in steam generator tubes is evaluated using multivariate logistic regression. The cracked tube specimens are made using the withdrawn steam generator tubes. Therefore the cracks are not artificial but real. Using the multivariate logistic regression method, continuous POD surfaces are evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive evaluation of the cracked tubes. Length and depth of cracks are considered in multivariate logistic regression and their effects on detection capacity are evaluated.
Park, Seo-Yeon;Kim, Jong-Suk;Kim, Tae-Woong;Lee, Joo-Heon
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.359-359
/
2020
현재 우리나라의 가뭄감시 정보는 기상학적/농업적/수문학적 가뭄이 별도의 지수로 개발되어 다양한 형태의 정보를 생산·제공되고 있다. 각각의 가뭄 지수들 기준 및 특성에 따라 분석되고 있기 때문에 가뭄전문가의 입장에서는 매우 정밀한 가뭄정보를 제공받는 장점이 있는 반면에, 일반 국민들이 가뭄 정보를 받아들이고 이해하는데 어려움이 있어 이를 한눈에 알아볼 수 있는 통합가뭄지도가 필요하며, 통합가뭄도를 제작하기 위해서는 통합가뭄지수가 개발되어야 한다. 본 연구에서는 원격탐사자료를 활용하여 농업적 가뭄지수인 Agricultural Dry Condition Index (ADCI)와 수문학적 가뭄지수인 Water Budget-based Drought Index (WBDI)를 개발하였으며, 기상학적 가뭄지수인 Standardized Precipitation Index (SPI)를 포함하여 기상-농업-수문학적 가뭄지수를 결합한 통합가뭄지수를 산정하였다. 다양한 가뭄지수를 활용하여 개발되었기 때문에 다변량 통계 모형 중 선형 모형인 Principal Component Analysis (PCA)기법과 비선형 모형인 Kernel Entropy PCA, Kernel PCA를 적용하였다. 또한 과거 가뭄사상을 활용하여 산정된 통합가뭄지수 검증을 위해 과거 가뭄사상에 대한 가뭄 발생시기, 심도, 쇠퇴패턴이 양상 평가 및 Intentionally Biased Bootstrap Resampling (IBBR)을 활용한 지수별 민감도 분석을 통해 통합가뭄지수 적용성 평가를 진행하였다.
Kim, Bo-Ram;Chae, Byung-Gon;Kim, Yongje;Seo, Yong-Seok
The Journal of Engineering Geology
/
v.23
no.4
/
pp.353-361
/
2013
To analyze the distribution of earthquake-induced strain data in rock masses, statistical analysis was performed on four-directional strain data obtained from a ground movement monitoring system installed in Korea. Strain data related to the 2011 Tohoku-oki earthquake and two aftershocks of >M7.0 in 2011 were used in x-MR control chart analysis, a type of univariate statistical analysis that can detect an abnormal distribution. The analysis revealed different dispersion times for each measurement orientation. In a more comprehensive analysis, the strain data were re-evaluated using multivariate statistical analysis (MSA) considering correlations among the various data from the different measurement orientations. $T_2$ and Q-statistics, based on principal component analysis, were used to analyze the time-series strain data in real-time. The procedures were performed with 99.9%, 99.0%, and 95.0% control limits. It is possible to use the MSA data to successfully detect an abnormal distribution caused by earthquakes because the dispersion time using the 99.9% control limit is concurrent with or earlier than that from the x-MR analysis. In addition, the dispersion using the 99.0% and 95.0% control limits detected an abnormal distribution in advance. This finding indicates the potential use of MSA for recognizing abnormal distributions of strain data.
The objectives of this study were to analyze the influence of chemical water quality on fish guilds, pollution tolerance and the multi-metric ecological health, based on the Fish Assessment Index (FAI) in the main stream of Mangyeong River between 2009-2016. The quality of water with specific conductivity, TP, and $NH_4-N$ got worse dramatically in the down region. During the study, a total of 50 species were collected and the most dominant species was Zacco platypus. Also known as tolerant species, accounted 22.9% of the total abundances, thus indicating a trophic degradation. The downstream region (S5) had the highest number of fish external abnormalities, indicating a degradation of ecological health, based on the fish assemblages. Pearson correlation analysis indicated that relative abundance of tolerant fish species and omnivore fish species had a significant positive correlation(r>0.30, p<0.05) with values of BOD, conductivity and $NH_4-N$. Whereas, the relative abundance of the sensitive species and insectivore species had a significant negative relations (r<-0.30, p<0.001) with the parameters. The mean obtained from the multi-metric fish model, based on the FAI of all sites was 47 (n=40). This indicated a "fair condition" in the ecological health, and the downstream regions (S3-S5) were judged as "bad condition", indicating an influence of the chemical degradation on the ecological health.
Journal of Korean Society of Environmental Engineers
/
v.37
no.3
/
pp.137-144
/
2015
The purpose of this study is to develop an warning system to detect real-time water quality abnormality using a multivariate statistical approach. In this study, we applied principal component analysis among multivariate data analyses which was used for the correlation between water quality parameters considering the real-time algorithm to determine abnormality in water quality. We applied our approach to real field data and showed the utilization of algorithm for the real-time monitoring to find water quality abnormality. In addition, our approach with Korea Meterological Adminstration database identified heavy rain data due to climate change is one of the most important factors to explain water quality abnormality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.