Journal of the Korean Data and Information Science Society
/
제28권3호
/
pp.533-545
/
2017
분위수 회귀모형은 반응변수의 조건부 분포에 대하여 포괄적이고 유용한 통계적 정보를 제공한다. 그러나 많은 실제 자료는 설명변수와 반응변수가 비선형의 관계를 갖고 있어 전통적인 선형 분위수 회귀모형은 왜곡되고 잘못된 결과를 초래할 수 있다. 또한 자료의 복잡성이 증가하여 반응변수가 여러개인 다변량 자료의 분석에 대한 보다 정확한 예측과 더불어 풍부한 해석에 대한 요구가 증가하고 있다. 이러한 이유로 본 연구에서는 다변량 분위수 회귀나무 모형을 제안하였다. 본 연구에서는 기존의 다변량 회귀나무 모형의 분할변수 선택 알고리즘의 문제점을 지적하고 향상된 분할변수 선택 알고리즘을 제안하였다. 제안한 알고리즘은 합리적인 계산시간으로 적용 가능하며 분할변수 선택에서 편향 발생의 문제를 갖지 않는 동시에 기존 방법보다 더 정확하게 분할변수를 선택할 수 있있다. 본 연구에서는 모의실험과 실증 예제를 통해 제안한 방법의 우수한 성능과 유용성을 확인하였다.
고속액체크로마트그래피에서 RAH분자들이 상대적 용리시간을 다변량선형회귀분석과 인공신경망분석방법을 사용하여 학습시킨 후, 시험 세트의 상대적 용리시간을 예측하였다. PAH의 QSRR에서 주요한 설명인자는 분자연결지수($^1X_v,\;^2X_v$),길이와 폭의 비율(L/B) 및 분자 쌍극자 모멘트(D)이었다, 슬롯 모델과 관계깊은 L/B은 인공신경망분석방법에서는 적절한 설명인자로 작용하나, 다변량회귀분석에서는 그러하지 못하다. 시험세트에서 용리시간 예측도를 나타내주는 분산은 각각 인공신경망분석방법에서 0.0099, 다변량회귀분석방법에서 0.0114이었다. 인공신경망분석방법이 다변량회귀분석보다 더 좋은 결과를 보여준다.
본 연구는 다변량회귀모형(多變量回歸模型)이 동일한 산업내 동일한 시기에 이루어진 규제변동(規制變動)의 재무효과를 측정하는 데에 시장모형(市場模型)보다 장기간에 걸친 복수의 가변적 발표내용, 규제관련기업의 차별적 주가수익반응, 그리고 주가수익잔차간 높은 상관관계 등의 규제특성과 방법론적 문제점을 해결하는 데에 유용한 사건모형(事件模型)임을 실증하고자 한다. 본 연구는 규제변동의 실증적 사례로서 1988년 12월 2일 정부가 발표한 ${\ulcorner}$자본시장국제화의 단계적 확대추진계획${\lrcorner}$에 이르기까지의 일련의 법제적 조치와 발표내용을 사건으로 하여 금융증권산업내 은행, 증권회사, 보험회사 그리고 투자금융회사의 평균적, 개별적, 포트폴리오 비정상수익에 관한 제반공동가설을 모수추정(母數推定)의 제약(制約)에 따라 비제약적(非制約的) 다변량회귀모형(多變量回歸模型) 또는 제약적(制約的) 다변량회귀모형(多變量回歸模型)으로 검증하였다. 모든 13개 발표사건에 대한 평균적, 개별적, 포트폴리오 비정상수익의 가설검증결과에서 은행과 증권회사는 모두 통계적으로 비유의적 반응을 보인 반면, 보험회사와 투자금융회사는 최종발표일이 다가오면서 일부 발표사건에 유의적인 평균반응과 개별반응을 보였다. 특히 모든 금융증권기관은 모든 사건에 비유의적 포트폴리오반응을 보여, Stigler가 제시한 '부(富)의 이전가설(移轉假說)'은 기각되지 못하였다.
다변량 회귀분석은 경시적 자료분석이나 함수적 자료분석 등 다양한 분야에서 빈번하게 사용되는 통계적 방법론이다. 다변량 회귀분석은 설명변수의 차원 뿐만 아니라 반응변수의 차원때문에 일변량 회귀분석에서 보다 차원의 저주문제에 더 강한 영향을 받는다. 이러한 문제를 해결하기 위해 최근 Yoo (2018)와 Yoo (2019a)에 세 가지 모형기반 반응변수 차원축소 방법이 제시되었다. 하지만 Yoo (2019a)에서 제시한 기본 방법은 모의실험 결과 모형에 가장 영향을 덜 받지만, 다른 두 방법 중 더 나은 방법보다 더 좋은 추정결과를 제시하지 못한다. 이러한 단점을 극복하기 위해 본 논문에서는 기본 방법의 결과 다른 두 방법의 결과를 비교하여, 자료에 따라 최선의 방법을 제시하는 선택 알고리듬을 제시하고, 이를 주선택 반응변수 차원축소라 명명한다. 다양한 모의실험 결과 주선택 반응변수 차원축소는 Yoo (2019a)의 기본방법보다 더 정확하게 차원을 축소하고, 모든 경우에 있더 더 바람직한 방법을 선택함을 확인할 수 있다. 이러한 결과로 제안한 주선택 반응변수의 차원축소 방법의 실제적 유용성을 확인할 수 있다.
연속 형질(quantitative trait)에 영향을 미치는 유전자를 알아내기 위해 형제 쌍의 자료를 수집하여, 주로 이용되는 Haseman과 Elston (1972)의 최소제곱 회귀검정법으로 분석하는데 이는 단일 형질에 대한 분석법이다. 현실적으로 여러 형질들이 복잡하게 단일유전자 좌위(single locus)와 연관되어 있어 함께 수집하게 되는 경우에는, 이러한 연관된 여러 형질을 동시에 분석하는 유전연관성 검정법(linkage test)이 절실히 필요한 실정이다. Amos 등 (1990)은 주성분(principal component) 선형모형을 이용하여 Haseman과 Elston (1972)방법을 둘 이상의 형질의 다변량 분석법으로 확장시켰다. 그러나 이 검정방법은 통계량의 분포를 알 수 없기에 아직 제 1종 오류가 제대로 통제되지 못하는 문제를 가지고 있다. 본 논문에서는 이러한 다변량 형질 자료의 연관성검정에 있어 단일변량에 대한 비모수 추세검정법을 다변량 자료에 대한 분석법으로 확장시킨 통계량을 사용할 것을 제안한다. Amos 등 (1990)이 제안한 방법과 다변량 추세검정 통계량을 모의실험으로 생성한 연속형 형질자료에 적용하였을 때, 다변량 추세검정 통계량은 Amos 등 (1990) 방법에서의 여러 문제점이 발생되지 않을 뿐만 아니라 모의실험에서 제 1종 오류가 정해진 유의수준에 가까운 것을 확인하였고, 검정적이 더 높음을 볼 수 있었다.
Communications for Statistical Applications and Methods
/
제19권1호
/
pp.107-115
/
2012
본 논문에서는 Yoo와 Cook (2007)에 의하여 제시된 다변량 회귀의 조건부 평균에 대한 최소 불일치 함수 접근법을 통한 최적 차원축소 부분공간의 추정에서 차원의 수가 추정된 선형결합들과 설명력 등에 어떤 영향을 미치는 지를 시뮬레이션 자료를 통하여 알아보았다. 그 결과 추정에 사용된 차원수에 따른 여러 결과들을 차원결정을 위한 검정과 함께 활용하면 모형에 필요한 차원수를 탐색하는데 매우 효과적임을 알 수 있었다.
Communications for Statistical Applications and Methods
/
제18권1호
/
pp.13-21
/
2011
본 논문에서는 계절성을 가지는 다변량 비정상 시계열자료의 분석 방법을 연구한다. 이를 위하여, 3가지의 다변량 시계열분석 모형(계절형 공적분 모형, 계절형 가변수를 가지는 비계절형 공적분 모형, 차분을 이용한 벡터자기회귀모형)을 고려하고, 한국의 실제 거시경제 자료를 이용하여 3가지 모형의 예측력을 비교한다. 공적분 모형은 단기적 예측에서 우수하였고, 장기적 예측에서는 차분을 이용한 벡터자기회귀모형이 우수하였다.
우리나라 11개 기상관측지역의 월별 기상자료가 증발접시계수에 미치는 영향을 분석하고, 증발접시계수 산정을 위한 4가지 형태의 다변량 선형회귀모형의 적용성을 검토하였다. 개발된 증발접시계수 산정모형의 적용성을 평가하기 위해서 기존에 다른 연구자들에 의해서 제안된 6가지의 모형과 비교 평가하였다. 우리나라 11개 기상관측지역에서 증발접시계수는 1, 2, 3, 7, 11, 12월은 기온에 가장 큰 영향을 받고, 다른 월들은 일사량에 가장 큰 영향을 받는 것으로 나타났다. 전반적으로 모든 월에서 풍속과 상대습도는 기온이나 일사량과 비교해서 증발접시계수에 큰 영향을 미치지 않는 것으로 나타났다. 모든 지역과 월에서 각 지역별로 5개의 독립변수(풍속, 상대습도, 기온, 일조시간과 가조시간의 비, 일사량)를 적용하여 유도된 모형이 가장 양호한 증발량 산정 결과를 보였다. 모형 검증결과에 의하면 다변량 선형회귀분석을 적용하여 증발접시계수를 산정하는 경우 일부 지역과 월에서 제한적으로 적용할 수 있을 것으로 판단된다.
정보적 설명 변수 공간은 일반적인 충분차원축소 방법들이 요구하는 가정들이 만족하지 않을 때 중심부분공간을 추정하기 위해 유용하다. 최근 Ko와 Yoo (2022)는 다변량 회귀에서 Li 등 (2008)이 제시한 투영-재표본 방법론을 사용하여 정보적 설명 변수 공간이 아닌 투영-재표본 정보적 설명 변수 공간을 새로이 정의하였다. 이 공간은 기존의 정보적 설명 변수 공간에 포함되지만 중심 부분 공간을 포함한다. 본 논문에서는 다변량 회귀에서 정보적 설명 변수 공간을 직접적으로 추정할 수 있는 방법을 제안하고, 이를 Ko와 Yoo (2022)가 제시한 방법과 이론적으로 그리고 모의실험을 통해 비교하고자 한다. 모의실험에 따르면 Ko-Yoo 방법론이 본 논문에서 제시한 추정 방법보다 더 정확하게 중심 부분 공간을 추정하고, 추정값들의 변동이 적다는 측면에서 보다 더 효율적임을 알 수 있다.
임상 의학의 연구에 사용되는 대표적 다변량 분석 방법은 다중 회귀 분석 방법인데, 이는 인과 관계를 토대로 여러 개의 변수에 의한 한꺼번에의 영향력을 분석하기 위한 방법이다. 다중 회귀 분석은 기본적으로 회귀 분석의 기본 가정을 만족해야 함은 물론, 여러 개의 독립 변수들이 포함되기 때문에 변수들을 모형에 포함시키는 방법 및 다중 공선성 문제에 대한 고려가 필요하다. 다중 회귀 분석 모형의 설명력은 결정 계수 $R^2$으로 표현되어 1에 가까울수록 설명력이 크며, 각 독립 변수들의 결과에의 영향력은 회귀 계수인 ${\beta}$값으로 표현된다. 다중 회귀 분석은 종속 변수의 형태에 따라 다중 선형 회귀 분석, 다중 로지스틱 회귀 분석, 콕스 회귀 분석으로 나눌 수 있다. 종속 변수가 연속 변수인 경우 다중 선형 회귀 분석, 범주형 변수인 경우 다중 로지스틱 회귀 분석, 시간의 영향을 고려한 상태 변수인 경우는 콕스 회귀 분석을 시행해야 하며, 각각 결과에의 영향력은 회귀 계수 ${\beta}$, 교차비, 위험비로 평가한다. 이러한 다변량 분석에 대한 이해는 연구를 계획하고 결과를 분석하고자 하는 임상 의사에게 있어 보다 효율적인 연구를 위해 필수적인 소양이라고 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.