• 제목/요약/키워드: 다변량회귀

검색결과 341건 처리시간 0.023초

다변량 분위수 회귀나무 모형에 대한 연구 (Multivariate quantile regression tree)

  • 김재오;조형준;방성완
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권3호
    • /
    • pp.533-545
    • /
    • 2017
  • 분위수 회귀모형은 반응변수의 조건부 분포에 대하여 포괄적이고 유용한 통계적 정보를 제공한다. 그러나 많은 실제 자료는 설명변수와 반응변수가 비선형의 관계를 갖고 있어 전통적인 선형 분위수 회귀모형은 왜곡되고 잘못된 결과를 초래할 수 있다. 또한 자료의 복잡성이 증가하여 반응변수가 여러개인 다변량 자료의 분석에 대한 보다 정확한 예측과 더불어 풍부한 해석에 대한 요구가 증가하고 있다. 이러한 이유로 본 연구에서는 다변량 분위수 회귀나무 모형을 제안하였다. 본 연구에서는 기존의 다변량 회귀나무 모형의 분할변수 선택 알고리즘의 문제점을 지적하고 향상된 분할변수 선택 알고리즘을 제안하였다. 제안한 알고리즘은 합리적인 계산시간으로 적용 가능하며 분할변수 선택에서 편향 발생의 문제를 갖지 않는 동시에 기존 방법보다 더 정확하게 분할변수를 선택할 수 있있다. 본 연구에서는 모의실험과 실증 예제를 통해 제안한 방법의 우수한 성능과 유용성을 확인하였다.

고속액체 크로마토그래피에서 PAH분자의 구조에 따른 용리시간 예측 (Prediction of Retention Time for PAH Molecule in HPLC)

  • 김영구
    • 대한화학회지
    • /
    • 제44권2호
    • /
    • pp.102-108
    • /
    • 2000
  • 고속액체크로마트그래피에서 RAH분자들이 상대적 용리시간을 다변량선형회귀분석과 인공신경망분석방법을 사용하여 학습시킨 후, 시험 세트의 상대적 용리시간을 예측하였다. PAH의 QSRR에서 주요한 설명인자는 분자연결지수($^1X_v,\;^2X_v$),길이와 폭의 비율(L/B) 및 분자 쌍극자 모멘트(D)이었다, 슬롯 모델과 관계깊은 L/B은 인공신경망분석방법에서는 적절한 설명인자로 작용하나, 다변량회귀분석에서는 그러하지 못하다. 시험세트에서 용리시간 예측도를 나타내주는 분산은 각각 인공신경망분석방법에서 0.0099, 다변량회귀분석방법에서 0.0114이었다. 인공신경망분석방법이 다변량회귀분석보다 더 좋은 결과를 보여준다.

  • PDF

다변량회귀모형(多變量回歸模型)을 이용한 규제변동(規制變動)의 재무효과 측정(測定)

  • 유범준
    • 재무관리연구
    • /
    • 제9권1호
    • /
    • pp.83-109
    • /
    • 1992
  • 본 연구는 다변량회귀모형(多變量回歸模型)이 동일한 산업내 동일한 시기에 이루어진 규제변동(規制變動)의 재무효과를 측정하는 데에 시장모형(市場模型)보다 장기간에 걸친 복수의 가변적 발표내용, 규제관련기업의 차별적 주가수익반응, 그리고 주가수익잔차간 높은 상관관계 등의 규제특성과 방법론적 문제점을 해결하는 데에 유용한 사건모형(事件模型)임을 실증하고자 한다. 본 연구는 규제변동의 실증적 사례로서 1988년 12월 2일 정부가 발표한 ${\ulcorner}$자본시장국제화의 단계적 확대추진계획${\lrcorner}$에 이르기까지의 일련의 법제적 조치와 발표내용을 사건으로 하여 금융증권산업내 은행, 증권회사, 보험회사 그리고 투자금융회사의 평균적, 개별적, 포트폴리오 비정상수익에 관한 제반공동가설을 모수추정(母數推定)의 제약(制約)에 따라 비제약적(非制約的) 다변량회귀모형(多變量回歸模型) 또는 제약적(制約的) 다변량회귀모형(多變量回歸模型)으로 검증하였다. 모든 13개 발표사건에 대한 평균적, 개별적, 포트폴리오 비정상수익의 가설검증결과에서 은행과 증권회사는 모두 통계적으로 비유의적 반응을 보인 반면, 보험회사와 투자금융회사는 최종발표일이 다가오면서 일부 발표사건에 유의적인 평균반응과 개별반응을 보였다. 특히 모든 금융증권기관은 모든 사건에 비유의적 포트폴리오반응을 보여, Stigler가 제시한 '부(富)의 이전가설(移轉假說)'은 기각되지 못하였다.

  • PDF

다변량회귀에서 주선택 반응변수 차원축소 (Principal selected response reduction in multivariate regression)

  • 유재근
    • 응용통계연구
    • /
    • 제34권4호
    • /
    • pp.659-669
    • /
    • 2021
  • 다변량 회귀분석은 경시적 자료분석이나 함수적 자료분석 등 다양한 분야에서 빈번하게 사용되는 통계적 방법론이다. 다변량 회귀분석은 설명변수의 차원 뿐만 아니라 반응변수의 차원때문에 일변량 회귀분석에서 보다 차원의 저주문제에 더 강한 영향을 받는다. 이러한 문제를 해결하기 위해 최근 Yoo (2018)와 Yoo (2019a)에 세 가지 모형기반 반응변수 차원축소 방법이 제시되었다. 하지만 Yoo (2019a)에서 제시한 기본 방법은 모의실험 결과 모형에 가장 영향을 덜 받지만, 다른 두 방법 중 더 나은 방법보다 더 좋은 추정결과를 제시하지 못한다. 이러한 단점을 극복하기 위해 본 논문에서는 기본 방법의 결과 다른 두 방법의 결과를 비교하여, 자료에 따라 최선의 방법을 제시하는 선택 알고리듬을 제시하고, 이를 주선택 반응변수 차원축소라 명명한다. 다양한 모의실험 결과 주선택 반응변수 차원축소는 Yoo (2019a)의 기본방법보다 더 정확하게 차원을 축소하고, 모든 경우에 있더 더 바람직한 방법을 선택함을 확인할 수 있다. 이러한 결과로 제안한 주선택 반응변수의 차원축소 방법의 실제적 유용성을 확인할 수 있다.

다변량 형질의 유전연관성에 대한 주성분을 이용한 회귀방법와 다변량 비모수 추세검정법의 비교 (Comparison of Principal Component Regression and Nonparametric Multivariate Trend Test for Multivariate Linkage)

  • 김수영;송혜향
    • 응용통계연구
    • /
    • 제21권1호
    • /
    • pp.19-33
    • /
    • 2008
  • 연속 형질(quantitative trait)에 영향을 미치는 유전자를 알아내기 위해 형제 쌍의 자료를 수집하여, 주로 이용되는 Haseman과 Elston (1972)의 최소제곱 회귀검정법으로 분석하는데 이는 단일 형질에 대한 분석법이다. 현실적으로 여러 형질들이 복잡하게 단일유전자 좌위(single locus)와 연관되어 있어 함께 수집하게 되는 경우에는, 이러한 연관된 여러 형질을 동시에 분석하는 유전연관성 검정법(linkage test)이 절실히 필요한 실정이다. Amos 등 (1990)은 주성분(principal component) 선형모형을 이용하여 Haseman과 Elston (1972)방법을 둘 이상의 형질의 다변량 분석법으로 확장시켰다. 그러나 이 검정방법은 통계량의 분포를 알 수 없기에 아직 제 1종 오류가 제대로 통제되지 못하는 문제를 가지고 있다. 본 논문에서는 이러한 다변량 형질 자료의 연관성검정에 있어 단일변량에 대한 비모수 추세검정법을 다변량 자료에 대한 분석법으로 확장시킨 통계량을 사용할 것을 제안한다. Amos 등 (1990)이 제안한 방법과 다변량 추세검정 통계량을 모의실험으로 생성한 연속형 형질자료에 적용하였을 때, 다변량 추세검정 통계량은 Amos 등 (1990) 방법에서의 여러 문제점이 발생되지 않을 뿐만 아니라 모의실험에서 제 1종 오류가 정해진 유의수준에 가까운 것을 확인하였고, 검정적이 더 높음을 볼 수 있었다.

다변량회귀 조건부 평균모형에 대한 최적 차원축소 방법에서 차원수가 결과에 미치는 영향 (Effect of Dimension in Optimal Dimension Reduction Estimation for Conditional Mean Multivariate Regression)

  • 서은경;박종선
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.107-115
    • /
    • 2012
  • 본 논문에서는 Yoo와 Cook (2007)에 의하여 제시된 다변량 회귀의 조건부 평균에 대한 최소 불일치 함수 접근법을 통한 최적 차원축소 부분공간의 추정에서 차원의 수가 추정된 선형결합들과 설명력 등에 어떤 영향을 미치는 지를 시뮬레이션 자료를 통하여 알아보았다. 그 결과 추정에 사용된 차원수에 따른 여러 결과들을 차원결정을 위한 검정과 함께 활용하면 모형에 필요한 차원수를 탐색하는데 매우 효과적임을 알 수 있었다.

다변량 비정상 계절형 시계열모형의 예측력 비교 (Comparison of Forecasting Performance in Multivariate Nonstationary Seasonal Time Series Models)

  • 성병찬
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.13-21
    • /
    • 2011
  • 본 논문에서는 계절성을 가지는 다변량 비정상 시계열자료의 분석 방법을 연구한다. 이를 위하여, 3가지의 다변량 시계열분석 모형(계절형 공적분 모형, 계절형 가변수를 가지는 비계절형 공적분 모형, 차분을 이용한 벡터자기회귀모형)을 고려하고, 한국의 실제 거시경제 자료를 이용하여 3가지 모형의 예측력을 비교한다. 공적분 모형은 단기적 예측에서 우수하였고, 장기적 예측에서는 차분을 이용한 벡터자기회귀모형이 우수하였다.

다변량 선형회귀분석을 이용한 증발접시계수 산정방법 적용성 검토 (Evaluation of applicability of pan coefficient estimation method by multiple linear regression analysis)

  • 임창수
    • 한국수자원학회논문집
    • /
    • 제55권3호
    • /
    • pp.229-243
    • /
    • 2022
  • 우리나라 11개 기상관측지역의 월별 기상자료가 증발접시계수에 미치는 영향을 분석하고, 증발접시계수 산정을 위한 4가지 형태의 다변량 선형회귀모형의 적용성을 검토하였다. 개발된 증발접시계수 산정모형의 적용성을 평가하기 위해서 기존에 다른 연구자들에 의해서 제안된 6가지의 모형과 비교 평가하였다. 우리나라 11개 기상관측지역에서 증발접시계수는 1, 2, 3, 7, 11, 12월은 기온에 가장 큰 영향을 받고, 다른 월들은 일사량에 가장 큰 영향을 받는 것으로 나타났다. 전반적으로 모든 월에서 풍속과 상대습도는 기온이나 일사량과 비교해서 증발접시계수에 큰 영향을 미치지 않는 것으로 나타났다. 모든 지역과 월에서 각 지역별로 5개의 독립변수(풍속, 상대습도, 기온, 일조시간과 가조시간의 비, 일사량)를 적용하여 유도된 모형이 가장 양호한 증발량 산정 결과를 보였다. 모형 검증결과에 의하면 다변량 선형회귀분석을 적용하여 증발접시계수를 산정하는 경우 일부 지역과 월에서 제한적으로 적용할 수 있을 것으로 판단된다.

다변량회귀에서 정보적 설명 변수 공간의 추정과 투영-재표본 정보적 설명 변수 공간 추정의 고찰 (Note on the estimation of informative predictor subspace and projective-resampling informative predictor subspace)

  • 유재근
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.657-666
    • /
    • 2022
  • 정보적 설명 변수 공간은 일반적인 충분차원축소 방법들이 요구하는 가정들이 만족하지 않을 때 중심부분공간을 추정하기 위해 유용하다. 최근 Ko와 Yoo (2022)는 다변량 회귀에서 Li 등 (2008)이 제시한 투영-재표본 방법론을 사용하여 정보적 설명 변수 공간이 아닌 투영-재표본 정보적 설명 변수 공간을 새로이 정의하였다. 이 공간은 기존의 정보적 설명 변수 공간에 포함되지만 중심 부분 공간을 포함한다. 본 논문에서는 다변량 회귀에서 정보적 설명 변수 공간을 직접적으로 추정할 수 있는 방법을 제안하고, 이를 Ko와 Yoo (2022)가 제시한 방법과 이론적으로 그리고 모의실험을 통해 비교하고자 한다. 모의실험에 따르면 Ko-Yoo 방법론이 본 논문에서 제시한 추정 방법보다 더 정확하게 중심 부분 공간을 추정하고, 추정값들의 변동이 적다는 측면에서 보다 더 효율적임을 알 수 있다.

임상의를 위한 다변량 분석의 실제 (Multivariate Analysis for Clinicians)

  • 오주한;정석원
    • Clinics in Shoulder and Elbow
    • /
    • 제16권1호
    • /
    • pp.63-72
    • /
    • 2013
  • 임상 의학의 연구에 사용되는 대표적 다변량 분석 방법은 다중 회귀 분석 방법인데, 이는 인과 관계를 토대로 여러 개의 변수에 의한 한꺼번에의 영향력을 분석하기 위한 방법이다. 다중 회귀 분석은 기본적으로 회귀 분석의 기본 가정을 만족해야 함은 물론, 여러 개의 독립 변수들이 포함되기 때문에 변수들을 모형에 포함시키는 방법 및 다중 공선성 문제에 대한 고려가 필요하다. 다중 회귀 분석 모형의 설명력은 결정 계수 $R^2$으로 표현되어 1에 가까울수록 설명력이 크며, 각 독립 변수들의 결과에의 영향력은 회귀 계수인 ${\beta}$값으로 표현된다. 다중 회귀 분석은 종속 변수의 형태에 따라 다중 선형 회귀 분석, 다중 로지스틱 회귀 분석, 콕스 회귀 분석으로 나눌 수 있다. 종속 변수가 연속 변수인 경우 다중 선형 회귀 분석, 범주형 변수인 경우 다중 로지스틱 회귀 분석, 시간의 영향을 고려한 상태 변수인 경우는 콕스 회귀 분석을 시행해야 하며, 각각 결과에의 영향력은 회귀 계수 ${\beta}$, 교차비, 위험비로 평가한다. 이러한 다변량 분석에 대한 이해는 연구를 계획하고 결과를 분석하고자 하는 임상 의사에게 있어 보다 효율적인 연구를 위해 필수적인 소양이라고 할 수 있다.