경시적 자료는 각 환자마다 시간에 따라 반복 측정되는 코호트 연구 등에서 많이 쓰인다. 본 연구는 반응변수 간 상관성을 고려할 수 있는 결합 다단계 일반화 선형모형을 이용하여, 다변량 경시적 자료 분석을 수행하였다. 한국 유전체 역학 연구에서 실시한 코호트 자료를 적합하고 결과를 해석한다. 조건부 아카이케 정보 기준을 이용하여 모형 선택을 하고, 변량효과들의 추정치들을 설명한다.
단일지점(Single Site)에 대한 하천유량의 추계학적인 모의 발생을 위해서는 간단한 모델중의 하나로 Univariate AR(1) 모델이 흔히 쓰여왔다. 그러나 다지점(Multi Sites)에 대한 하천유량에 관한 추계학적인 모의발생은 지점간 서로의 연관성 때문에 단일지점을 위한 모의발생처럼 쉽게 해결되지 않았다. 본 연구에서는 미국 아이다호주의 Camas Creek 유역에 대하여 하나의 키이지점(Key Station)과 주변에 세 개의 종속지점(Subordinate Station)을 설정하고 다변량 AR(1)모델을 적용하여 모의발생된 월유량과 실측치를 통계적으로 비교, 분석하였다. 모의 발생된 월유량과 실측치를 평균, 분산, 왜곡도, 상관관계등에 의해 비교, 분석한 결과 모이 발생된 월유량과 실측치는 통계적으로 서로 유사성을 보였다.
Journal of the Korean Data and Information Science Society
/
제27권6호
/
pp.1453-1463
/
2016
가장 선호하는 금융위험 측정 방법은 통계적으로 최대손실금액을 추정하는 VaR (Value at Risk)이다. 포트폴리오를 구성하는 여러 산업에 대한 VaR (Value at Risk)는 분산공분산 행렬과 특정한 포트폴리오가 포함되어 변환된 일변량 위험을 이용하여 추정한다. Hong 등 (2016)은 다변량 분위벡터를 바탕으로 Vector at Risk를 정의하였으며, 특정한 포트폴리오가 설정되면 Vector at Risk 중의 한 점을 최적의 VaR 즉, 대안적인 VaR (AVaR)로 제안하였다. 본 연구에서는 다변량 정규분포에 대하여 AVaR의 특성을 탐색한다. 여러 종류의 분산공분산 행렬과 다양한 포트폴리오 가중값 벡터인 경우의 이변량과 삼변량의 정규분포를 따르는 모의실험 자료와 실증예제를 이용하여 대안적인 최대손실금액인 AVaR을 구하고 VaR과 비교 분석한다. 다변량 분위벡터를 이용한 AVaR는 VaR보다 작게 추정함을 발견하였으며, 이런 특징과 함께 AVaR의 특성을 토론한다.
표본조사에서 널리 쓰이는 모집단의 층화는 추정의 효율을 높이는 방법 중의 하나지만, 이상점을 포함하는 변수가 있는 경우에 여러 가지 문제점을 유발시킬 수 있다. 특히, 이상점이 존재하는 다변량 자료의 경우, 층화를 위한 $\kappa$-평균 군집방법은 이상점에 매우 민감하여 추정의 효율을 떨어뜨릴 수 있다. 본 연구에서는 이상점이 존재하는 다변량 자료의 층화를 위해 $\kappa$-평균 군집방법보다 강건하며 이상점을 따로 식별하는 과정이 배제된 $\kappa$-공간중위수 군집방법을 제안한다. 기존 관련연구인 박진우와 윤석훈 (2008)과 동일한 자료에 대한 사례분석을 통해 층화과정들을 비교, 검토하였으며 이들의 효율성을 추정량의 분산을 통해 비교하였다.
Biplot is a graphical display of the rows and columns an $n{\time}p$ data matrix. In particular, Gabriel(1981) suggested The MANOVA BIPLOT using singular value decomposition (SVD) with the averages of response variables according to treatment groups. But his biplot may cause wrong results by disregarding them when there exists covariate effects. In this paper, we will provide the MANCOVA BIPLOT based on the SVD with the parameter estimates for MANCOVA model when there exist covariate effects.
본 논문에서는 다변량 시계열 모형 진단을 위해 잔차의 자기상관성 유무를 확인하기 위한 와일드 붓스트랩(wild bootstrap) Ljung-Box(LB) 검정통계량을 연구하였다. 일반적으로 LB 검정은 오차가 서로 독립이며 동일한 분포를 따른다는 IID 가정 하에 유도되는 점근적 카이제곱 분포를 이용한다. 한편 금융시계열 자료는 분산에 조건부 이분산성이 존재하기 때문에 오차의 IID 가정을 만족시키지 못하며 이에 따라 점근적 분포를 이용한 LB 검정은 제1종의 오류를 만족시키지 못하게 된다. 이를 극복하기 위해 와일드 붓스트랩을 이용한 LB 검정법을 제안하고 그 성질을 연구하고자 한다. 벡터자기회귀 모형과 벡터오차수정 모형 등의 다양한 다변량 시계열 모형을 이용하여 모의실험을 실시하는 한편, 코스피 200지수와 지수선물 자료를 이용한 실증분석을 통해 와일드 붓스트랩을 이용한 LB 검정법이 조건부 이분산성의 부정적인 영향을 효과적으로 제거할 수 있음을 입증하였다.
본 연구는 다변량 통계분석을 이용하여 자동차사고성향에 대한 공통적인 특성을 찾아내고 그것이 심리적 성격특성과 관련이 있는가를 분석하고자 수행되었다. 이를 위하여 학생집단, 일반인집단 그리고 운전기사집단의 성격적 특성과 자동차사고경험 혹은 그 가능성을 비교 검토하였다. KG식 일반생활질문지에 의한 설문분석결과에 따르면 사고친화성향에 따라 2개의 집단으로 분류하는 것이 타당하다고 판단되었고, 수량화분석에 의해서도 집단을 구분할수 있었지만 일반인과 운전자 집단간에는 차이가 있었다.
층화는 표본설계 단계에서 예비정보를 활용하는 대표적인 방법으로 대부분의 전국 단위의 표본설계에서 널리 활용된다. 층화의 효율을 극대화시키기 위해서는 조사목적에 부합되는 적절한 층화변수를 선택하는 것이 매우 중요하다. 하나의 표본을 통해 여러 개의 관심변수를 동시에 조사하는 다목적조사에서 다변량 층화변수가 있을 때 층화 전략을 세우는 것은 매우 복잡한 양상을 띤다. 본 연구에서는 관심변수의 수가 매우 많은 다목적조사를 위한 층화전략을 다룬다. 층화를 위해 구체적으로 사용하는 통계적 도구는 요인분석과 군집분석 등의 다변량 통계기법인데, 먼저 요인분석을 통해 적절한 층화변수들을 선정한 후 그 변수들을 이용하여 군집분석을 통해 층화를 하는 전략을 소개한다. 본 연구에서는 구체적으로 해양수산부의 어업비계통생산량조사를 위한 표본설계에서의 층화과정을 다룬다.
가상현실 기법(virtual reality technologies)를 해양안전사고 가시화 시스템 개발에 적용하기 위한 개발론에 대해서 기술하였다. ‘목포해심’ 재결서 700여가지 사건에 대한 분류표와 수령화 표를 작성하여 질적 데이터를 양적 데이터로 변환하였다. 개발론에 대한 검토결과, 과거 10년 간의 해양사고 사건사례를 압축하여 저차원 데이터를 획득하기 위해서는 다변량해석기법(multivariate analysis)을 적용해야하고, 위기관리를 종합적으로 수행하기 위해서는 기존에 제시되고 있는 PRA, QRA, SPE 등의 기법 중 적합한 것을 적용할 필요가 있으며, 통계 데이터의 가시화를 위해서는 MATLAB의 Simulink 와 VR Toolkit을 이용하면 가능함을 분석할 수 있었다.
잠재집단 모형은 다변량 범주형 자료 안에 숨겨진 집단을 찾는 매우 중요한 도구종의 하나이다. 하지만 실제 자료분석에서 너무 많은 관찰변수들을 포함시킨 모형은 모형을 복잡하게 만들고 또한 모수추정의 정확도에 영향을 주기 때문에 정보가 손실되지 않는 내에서 유용한 변수를 찾는 것은 중요한 문제이다. Dean과 Raftery (2010)은 잠재집단 모형에서의 변수선택을 위해 BIC를 이용한 Headlong search 알고리즘을 제시하였는데 본 논문에서는 이 방법을 대체할 수 있는 방법으로 적합한 모형으로부터 계산된 잠재집단에 속할 사후확률을 이용하여 변수 선택을 하는 방법을 제안하고자 한다. 이를 위하여 잠재집단 모형의 적합성을 측정할 수 있는 새로운 통계량과 이를 이용한 변수선택 알고리즘을 제시할 것이다. 또한 제안된 방법의 효율성을 모의실험과 실증자료 분석을 통해 살펴보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.