• 제목/요약/키워드: 다변량통계분석

검색결과 477건 처리시간 0.031초

결합 다단계 일반화 선형모형을 이용한 다변량 경시적 자료 분석 (The Use of Joint Hierarchical Generalized Linear Models: Application to Multivariate Longitudinal Data)

  • 이동환;유재근
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.335-342
    • /
    • 2015
  • 경시적 자료는 각 환자마다 시간에 따라 반복 측정되는 코호트 연구 등에서 많이 쓰인다. 본 연구는 반응변수 간 상관성을 고려할 수 있는 결합 다단계 일반화 선형모형을 이용하여, 다변량 경시적 자료 분석을 수행하였다. 한국 유전체 역학 연구에서 실시한 코호트 자료를 적합하고 결과를 해석한다. 조건부 아카이케 정보 기준을 이용하여 모형 선택을 하고, 변량효과들의 추정치들을 설명한다.

다변량 모형에 의한 하천유량의 모의 발생 (A Multivariate Model Development For Stream Flow Generation)

  • 정상만
    • 물과 미래
    • /
    • 제24권4호
    • /
    • pp.67-72
    • /
    • 1991
  • 단일지점(Single Site)에 대한 하천유량의 추계학적인 모의 발생을 위해서는 간단한 모델중의 하나로 Univariate AR(1) 모델이 흔히 쓰여왔다. 그러나 다지점(Multi Sites)에 대한 하천유량에 관한 추계학적인 모의발생은 지점간 서로의 연관성 때문에 단일지점을 위한 모의발생처럼 쉽게 해결되지 않았다. 본 연구에서는 미국 아이다호주의 Camas Creek 유역에 대하여 하나의 키이지점(Key Station)과 주변에 세 개의 종속지점(Subordinate Station)을 설정하고 다변량 AR(1)모델을 적용하여 모의발생된 월유량과 실측치를 통계적으로 비교, 분석하였다. 모의 발생된 월유량과 실측치를 평균, 분산, 왜곡도, 상관관계등에 의해 비교, 분석한 결과 모이 발생된 월유량과 실측치는 통계적으로 서로 유사성을 보였다.

  • PDF

다변량 정규분포에서 대안적인 VaR의 특성 (Properties of alternative VaR for multivariate normal distributions)

  • 홍종선;이기쁨
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1453-1463
    • /
    • 2016
  • 가장 선호하는 금융위험 측정 방법은 통계적으로 최대손실금액을 추정하는 VaR (Value at Risk)이다. 포트폴리오를 구성하는 여러 산업에 대한 VaR (Value at Risk)는 분산공분산 행렬과 특정한 포트폴리오가 포함되어 변환된 일변량 위험을 이용하여 추정한다. Hong 등 (2016)은 다변량 분위벡터를 바탕으로 Vector at Risk를 정의하였으며, 특정한 포트폴리오가 설정되면 Vector at Risk 중의 한 점을 최적의 VaR 즉, 대안적인 VaR (AVaR)로 제안하였다. 본 연구에서는 다변량 정규분포에 대하여 AVaR의 특성을 탐색한다. 여러 종류의 분산공분산 행렬과 다양한 포트폴리오 가중값 벡터인 경우의 이변량과 삼변량의 정규분포를 따르는 모의실험 자료와 실증예제를 이용하여 대안적인 최대손실금액인 AVaR을 구하고 VaR과 비교 분석한다. 다변량 분위벡터를 이용한 AVaR는 VaR보다 작게 추정함을 발견하였으며, 이런 특징과 함께 AVaR의 특성을 토론한다.

κ-공간중위 군집방법을 활용한 층화방법 (Stratification Method Using κ-Spatial Medians Clustering)

  • 손순철;전명식
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.677-686
    • /
    • 2009
  • 표본조사에서 널리 쓰이는 모집단의 층화는 추정의 효율을 높이는 방법 중의 하나지만, 이상점을 포함하는 변수가 있는 경우에 여러 가지 문제점을 유발시킬 수 있다. 특히, 이상점이 존재하는 다변량 자료의 경우, 층화를 위한 $\kappa$-평균 군집방법은 이상점에 매우 민감하여 추정의 효율을 떨어뜨릴 수 있다. 본 연구에서는 이상점이 존재하는 다변량 자료의 층화를 위해 $\kappa$-평균 군집방법보다 강건하며 이상점을 따로 식별하는 과정이 배제된 $\kappa$-공간중위수 군집방법을 제안한다. 기존 관련연구인 박진우와 윤석훈 (2008)과 동일한 자료에 대한 사례분석을 통해 층화과정들을 비교, 검토하였으며 이들의 효율성을 추정량의 분산을 통해 비교하였다.

다변량 공분산분석 행렬도

  • 정수미;최용석;현기홍
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.285-290
    • /
    • 2005
  • Biplot is a graphical display of the rows and columns an $n{\time}p$ data matrix. In particular, Gabriel(1981) suggested The MANOVA BIPLOT using singular value decomposition (SVD) with the averages of response variables according to treatment groups. But his biplot may cause wrong results by disregarding them when there exists covariate effects. In this paper, we will provide the MANCOVA BIPLOT based on the SVD with the parameter estimates for MANCOVA model when there exist covariate effects.

  • PDF

벡터자기회귀모형과 오차수정모형의 자기상관성을 위한 와일드 붓스트랩 Ljung-Box 검정 (Wild bootstrap Ljung-Box test for autocorrelation in vector autoregressive and error correction models)

  • 이명우;이태욱
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.61-73
    • /
    • 2016
  • 본 논문에서는 다변량 시계열 모형 진단을 위해 잔차의 자기상관성 유무를 확인하기 위한 와일드 붓스트랩(wild bootstrap) Ljung-Box(LB) 검정통계량을 연구하였다. 일반적으로 LB 검정은 오차가 서로 독립이며 동일한 분포를 따른다는 IID 가정 하에 유도되는 점근적 카이제곱 분포를 이용한다. 한편 금융시계열 자료는 분산에 조건부 이분산성이 존재하기 때문에 오차의 IID 가정을 만족시키지 못하며 이에 따라 점근적 분포를 이용한 LB 검정은 제1종의 오류를 만족시키지 못하게 된다. 이를 극복하기 위해 와일드 붓스트랩을 이용한 LB 검정법을 제안하고 그 성질을 연구하고자 한다. 벡터자기회귀 모형과 벡터오차수정 모형 등의 다양한 다변량 시계열 모형을 이용하여 모의실험을 실시하는 한편, 코스피 200지수와 지수선물 자료를 이용한 실증분석을 통해 와일드 붓스트랩을 이용한 LB 검정법이 조건부 이분산성의 부정적인 영향을 효과적으로 제거할 수 있음을 입증하였다.

자동차 사고성향의 수량화 분석과 성격특성의 비교 (Comparing with Quantification Analysis of Car-Accident Traits and Personality Types)

  • 고병인;임현교
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2000년도 춘계 학술논문발표회 논문집
    • /
    • pp.270-275
    • /
    • 2000
  • 본 연구는 다변량 통계분석을 이용하여 자동차사고성향에 대한 공통적인 특성을 찾아내고 그것이 심리적 성격특성과 관련이 있는가를 분석하고자 수행되었다. 이를 위하여 학생집단, 일반인집단 그리고 운전기사집단의 성격적 특성과 자동차사고경험 혹은 그 가능성을 비교 검토하였다. KG식 일반생활질문지에 의한 설문분석결과에 따르면 사고친화성향에 따라 2개의 집단으로 분류하는 것이 타당하다고 판단되었고, 수량화분석에 의해서도 집단을 구분할수 있었지만 일반인과 운전자 집단간에는 차이가 있었다.

  • PDF

다목적 표본조사를 위한 다변량 층화 : 어업비계통생산량조사를 위한 표본설계 사례 (Multivariate Stratification Method for the Multipurpose Sample Survey : A Case Study of the Sample Design for Fisher Production Survey)

  • 박진우;김영원;이석훈;신지은
    • 한국조사연구학회지:조사연구
    • /
    • 제9권1호
    • /
    • pp.69-85
    • /
    • 2008
  • 층화는 표본설계 단계에서 예비정보를 활용하는 대표적인 방법으로 대부분의 전국 단위의 표본설계에서 널리 활용된다. 층화의 효율을 극대화시키기 위해서는 조사목적에 부합되는 적절한 층화변수를 선택하는 것이 매우 중요하다. 하나의 표본을 통해 여러 개의 관심변수를 동시에 조사하는 다목적조사에서 다변량 층화변수가 있을 때 층화 전략을 세우는 것은 매우 복잡한 양상을 띤다. 본 연구에서는 관심변수의 수가 매우 많은 다목적조사를 위한 층화전략을 다룬다. 층화를 위해 구체적으로 사용하는 통계적 도구는 요인분석과 군집분석 등의 다변량 통계기법인데, 먼저 요인분석을 통해 적절한 층화변수들을 선정한 후 그 변수들을 이용하여 군집분석을 통해 층화를 하는 전략을 소개한다. 본 연구에서는 구체적으로 해양수산부의 어업비계통생산량조사를 위한 표본설계에서의 층화과정을 다룬다.

  • PDF

가상현실 모델링 기법을 적용한 해양안전사고 예보시스템 개발에 관한 연구(1) : 개발개념 (Marine Casuality Forecasting System Based on the Virtual Reality Modeling Techniques(1) : Implementation Methodology)

  • 임정빈
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2002년도 추계학술발표회
    • /
    • pp.163-175
    • /
    • 2002
  • 가상현실 기법(virtual reality technologies)를 해양안전사고 가시화 시스템 개발에 적용하기 위한 개발론에 대해서 기술하였다. ‘목포해심’ 재결서 700여가지 사건에 대한 분류표와 수령화 표를 작성하여 질적 데이터를 양적 데이터로 변환하였다. 개발론에 대한 검토결과, 과거 10년 간의 해양사고 사건사례를 압축하여 저차원 데이터를 획득하기 위해서는 다변량해석기법(multivariate analysis)을 적용해야하고, 위기관리를 종합적으로 수행하기 위해서는 기존에 제시되고 있는 PRA, QRA, SPE 등의 기법 중 적합한 것을 적용할 필요가 있으며, 통계 데이터의 가시화를 위해서는 MATLAB의 Simulink 와 VR Toolkit을 이용하면 가능함을 분석할 수 있었다.

  • PDF

잠재변수 모형에서의 군집효율을 이용한 변수선택 (Variable selection for latent class analysis using clustering efficiency)

  • 김성경;서병태
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.721-732
    • /
    • 2018
  • 잠재집단 모형은 다변량 범주형 자료 안에 숨겨진 집단을 찾는 매우 중요한 도구종의 하나이다. 하지만 실제 자료분석에서 너무 많은 관찰변수들을 포함시킨 모형은 모형을 복잡하게 만들고 또한 모수추정의 정확도에 영향을 주기 때문에 정보가 손실되지 않는 내에서 유용한 변수를 찾는 것은 중요한 문제이다. Dean과 Raftery (2010)은 잠재집단 모형에서의 변수선택을 위해 BIC를 이용한 Headlong search 알고리즘을 제시하였는데 본 논문에서는 이 방법을 대체할 수 있는 방법으로 적합한 모형으로부터 계산된 잠재집단에 속할 사후확률을 이용하여 변수 선택을 하는 방법을 제안하고자 한다. 이를 위하여 잠재집단 모형의 적합성을 측정할 수 있는 새로운 통계량과 이를 이용한 변수선택 알고리즘을 제시할 것이다. 또한 제안된 방법의 효율성을 모의실험과 실증자료 분석을 통해 살펴보고자 한다.