• Title/Summary/Keyword: 다물체동역학 교육

Search Result 10, Processing Time 0.019 seconds

Analysis Method for Multi-Flexible-Body Dynamics Solver in RecurDyn (RecurDyn 솔버에 적용되어 있는 유연 다물체 동역학에 대한 해석기술)

  • Choi, Juhwan;Choi, Jin Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • The analysis of multi-flexible-body dynamics (MFBD) has been an important issue in the area of the computational dynamics. This technique has been developed and improved in RecurDyn solver. This paper reviews the formulation which is applied in the RecurDyn solver. Basically, in order to solve the multi-flexible-body dynamics problem, an incremental finite element formulation using a corotational procedure is used. In particular, in order to solve the rigid and flexible bodies together, a constraint equation between a rigid body and a flexible body is applied, in which a virtual body and a flexible body joint are introduced.

Recent Trends in Multibody Dynamics Researches reviewed from the papers presented in the Multibody2003 and in the 2003 ASME DETC (Multibody2003와 2003 ASME DETC의 논문들을 통해본 다물체동역학 연구의 세계적 연구추세)

  • Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1714-1717
    • /
    • 2003
  • ECCOMAS Thematic Conference Multibody 2003 was held at IST (Instituto Superior Technico), Lisbon, Portugal from July 1 to July 4. 2003. And MBDV(Multibody Dynamics and Vibration) in the 2003 ASME DETC was held at Chicago, U.S.A. from September 2 to September 6. In this paper, the presented papers in these conferences were reviewed and the trends in the multibody dynamics are summarized. The session titles in these conferences include Flexible Multibody Dynamics, Vehicle Dynamics, Contact, Biomechanics, Real-time Challenges, Spatial manipulator and Control, Multidisciplinary Applications, and Advanced Education. The poster session was also organized for more discussions in the Multibody2003 conference.

  • PDF

The Efficient Dynamic Modeling of a Manipulator Robot System (제조 공정용 로봇 매니퓰레이터의 효율적 다물체 동역학 해석 모델링 기술 개발)

  • Song, In-Ho;Ryu, Han-Sik;Choi, Jin-Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.155-164
    • /
    • 2015
  • Recently, the robot manipulators are needed more slim size and longer reach and more accurate movement for increasing productivity. So, in this paper, the simulation modeling method and the efficient modeling method for new slim & long reach robot has been investigated for forecasting the slim robot performance before making prototype. To do this investigation, the major parts of robot driving system such as motor, belt and reducer devices and parts assembly method have been investigated mainly. And then, using this developed modeling method the new designed robot will be forecasted about the dynamic performance of new designed robot.

Multibody Analysis of a Push-Push Type Mechanism for Micro SIM Card Socket (Micro SIM Card Socket에 사용된 Push-Push Type 기구의 다물체동역학 해석)

  • Choi, Chan Kyu;Kim, Ju Chul;Yun, Ju Young;Sim, Jung Kil;Yoo, Hong Hee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A SIM card socket is used for a cell phone to fix an USIM card and a push-push mechanism is typically employed in the SIM card socket for a user convenience. A SIM card is inserted with locking when a user pushes the card once and a SIM card is removed with unlocking when a user pushes the card again. A push-push mechanism is operated by a heart-cam structure and a main spring. A cam slider and a cam stick consisting a push-push mechanism may be broken because of the main spring. So, dynamic stress at a cam slider and a cam stick which is generated by a main spring during operating should be analyzed and considered in the push-push mechanism design. In this paper, a flexible multibody model of a push-push mechanism was developed to analyze dynamic stress at a cam slider and a cam stick.

Dynamic Responses Optimization of Vacuum Circuit Breaker Using Taghchi Method (실험 계획법을 이용한 진공 차단기의 동특성 최적화)

  • Jo, Jun Yeon;Ahn, Kil Young;Kim, Sung Tae;Yang, Hong Ik;Kim, Kyu Jung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • In this study, the VCB(Vacuum Circuit Breaker) has been developed using the Recurdyn that is widely used on multibody dynamics analysis. The VCB consists of three main circuits with the VI(Vacuum Interrupter) and the main frame with the operating mechanism. This analytic model is validated by comparing the simulation results and the experimental results. Generally, in order to reliably cut off the breaking current, the opening speed of the VCB after contact separation has to be a 0.9~1.1m/s. Therefore, the study of the design parameters of the VCB is needed. To improve the opening velocity, Taguchi design method is applied to optimize the design parameters of a VCB with a lot of linkages. In addition, to evaluate the improvement of the operating characteristics, the simulation results are compared with the Recurdyn and experimental results with improved prototype sample.

Flexible Body Dynamics Analysis of Agricultural Tractor Using 4-Post Road Simulator (4-Post Road Simulator 를 이용한 농용 트랙터의 유연 다물체 동역학 해석)

  • Park, Ji Soo;Lee, Kang Wook;Cho, Chong Youn;Yoon, Ji Won;Shin, Jai Yoon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2015
  • Agricultural tractors are utilized on rough road such as rice paddy field. Therefore, static and dynamic load should be considered when simulating structural analysis with finite element analysis (FEA). But it consumes a lot of time and effort to measure dynamic load because of difficulty and complexity in modeling various field working load conditions and kinematics of machinery. In this paper, to reduce the efforts, 4-post road simulator is developed for agricultural tractor like modeling commercial vehicle. In proving ground test in our facility, I measured acceleration of front/rare axle and strain of body frame to validate input loads. The acceleration is used for defining input loads. And strain is validated with dynamics analysis including mode superposition method. As a result, I was able to calculate 4-post input road profiles, which represent similar proving ground profile with good reliability.

Design and Analysis of Flexbeam in SNUF Blade Equipped with Active Trailing-Edge Flap for Helicopter Vibratory Load Reduction (헬리콥터 진동 하중 저감을 위한 능동 뒷전 플랩이 장착된 SNUF 블레이드의 유연보의 설계 및 해석)

  • Im, Byeong-Uk;Eun, Won-Jong;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.542-550
    • /
    • 2018
  • This paper presents design of a bearingless main rotor of SNUF (Seoul National University Flap) blade equipped with active trailing-edge flap to reduce the hub vibratory loads during helicopter forward flight. For that purpose, sectional design of the flexbeam is carried out using the thin-walled composite material rotating beam vibration analysis program (CORBA77_MEMB) in EDISON. Using the multi-body dynamics analysis program, DYMORE, blade dynamic characteristics and those of the loads control are examined using the active trailing-edge flap in terms of the flexbeam sectional design.

Vibration Analysis of Compressor and Pipe Using RecurDyn (RecurDyn 을 이용한 압축기 및 배관 진동 해석)

  • Kwon, Seungmin;Son, Youngboo;Ha, Jonghun;Yoo, Hong Hee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • Recently, noise reduction in room air conditioner has been one of the most important issues as well as cooling efficiency. A rotary compressor is widely used in room air conditioners. But, the rotary compressor is the dominant vibration/noise source in an air conditioner. A number of studies have been conducted on reducing rotary compressor vibration/noise through improving muffler and resonator design. However, a noise delivering path between compressor and pipe is not fully taken into consideration. In this paper, the vibration analysis model of rotary compressor is modeled using RecurDyn and experimental validation is presented.

Comfort Analysis of Mono-ski with Hydraulic Absorber (모노스키 유압 완충장치 특성에 따른 탑승 안락감 평가)

  • Cho, Hyeon-Seok;Park, Jin-Kook;Kim, Gyoo-Seok;Mun, Mu-Sung;Kim, Chang-Boo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.131-140
    • /
    • 2015
  • The mono-ski for the paraplegia designed to skiing is formed as seat bucket on the sled. The impact force transferred by snow surface during skiing is absorbed by the leg joints of normal human, but it is transferred to the human body on the seat when using mono-ski. Most of commercially available mono-ski have absorbing device and link mechanism between seat and ski mount in order to complement it. In this study we developed the comfort evaluation model that could provide skiing simulation of mono-ski with hydraulic damper and analyzed vibrational acceleration occurred during skiing uneven surface. The evaluation method used in this study is the international standard BS6841. We evaluated comfort performance of mono-ski in accordance with nozzle adjustment of hydraulic damper.

Minimization of the Bending Deflection of the Human-powered Aircraft Wing Induced by Change of an Incidence Angle (인간동력항공기의 붙임각 변화에 따른 날개 끝단 굽힘변위 최소화 연구)

  • Lee, Chang-Bae;Im, Byeong-Uk;Joo, Hyun-Shik;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.98-106
    • /
    • 2019
  • Human-powered aircraft has wings with a shape of high aspect ratio which results in large bending displacement. This paper aims to improve the structural limitation by changing an incidence angle of the wings. The tendency change of bending displacement at the wing tip is observed assuming that airfoil and cross-sectional shape of the wing is fixed, and amount of the total lift generated is satisfied. Quasi-steady lift, drag and the aerodynamic moment are distributed with regard to sections of the wing. Those are analyzed using a numerical nonlinear lifting-line method and 'geometrically exact beam' (GEB) program in EDISON. 'Variational Asymptotic Beam Sectional Analysis' (VABS) program is used to check if the present wing is structurally solid. Furthermore, the predicted tip deflections are verified by comparing with DYMORE.