• Title/Summary/Keyword: 다단 설계

Search Result 274, Processing Time 0.022 seconds

A New Design Method of Tapped Coupled-Line Filters (탭 선로를 이용한 새로운 결합선로 여파기 설계법)

  • 우동식;김강욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1100-1107
    • /
    • 2004
  • In this paper, a new design method fur tapped coupled-line filters has been developed. The design equations for this tapped-line filter have been obtained using a new equivalent circuit model of tapped lines. These tapped-lines replace input/output coupled lines of the conventional edge coupled-line filters, which tend to have very narrow line gaps(few mils). Therefore, tapped coupled-line filters tend to be less sensitive to filter fabrication tolerances and to be easily fabricated using milling tools. The new filter design algorithm allows very accurate filter design for frequencies up to 20 GHz and bandwidth less than 20 %.

Development of a Design System for Multi-Stage Gear Drives (1st Report : Procposal of Formal Processes for Dimensional Design of Gears) (다단 치차장치 설계 시스템 개발에 관한 연구(제 1보: 정식화된 제원 설계 프로세스의 제안))

  • Jeong, Tae-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.202-209
    • /
    • 2000
  • In recent years the concern of designing multi-stage gear drives increases with the more application of gear drives in high-speed and high-load. until now however research on the gear drive design has been focused on single gear pairs and the design has been depended on experiences and know-how of designers and carried out commonly by trial and error. We propose the automation of the dimensional design of gears and the configuration design for gear arrangement of two-and three-stage cylindrical gear drives. The dimensional design is divided into two types of design processes to determine the dimensions of gears. The first design process(Process I) uses the total volume of gears to determine gear ratio and uses K factor unit load and aspect ratio to determine gear dimensions. The second one(Process II) makes use of Niemann's formula and center distance to calculate gear ratio and dimensions. Process I and II employ material data from AGMA and ISO standards respectively. The configuration design determines the positions of gears to minimize the volume of gearbox by simulated annealing algorithm. Finally the availability of the design algorithm is validated by the design examples of two-and three-stage gear drives.

  • PDF

Design of Electric Automatic Manual Wheelchair Driving System (수·전동 휠체어 구동부 시스템 설계)

  • Kim, Jin-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5392-5395
    • /
    • 2013
  • Application of electric wheelchair, sort of wheelchair which is playing important role in transporting patients and old people, has been increasing. In this study, we designed the electric wheelchairs' driving system. Using the multi-step gear, the driving system can get great power, even though the small capacity of motors. First, we designed the multi-step gear, test its bending strength and contact strength, as well as verified its performance. We installed 'B-type electric brake(Multiple plate clutch, Anti-magnetization) in same axle of the driving system, so it is possible to stop under huge torque and small size. Using this driving system of the multi-step gear which we designed, it's possible to improve driving gear efficiency 30% up and create the high-competitive electric wheelchair. And, it is easy to repair and control.

Modeling and State Observer Design for Roll Slip in Cold Cluster Mills (냉간압연 다단 압연기의 롤 슬립 모델링 및 상태 관측기 설계)

  • Kang, Hyun Seok;Hong, Wan Kee;Hwang, I Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1543-1549
    • /
    • 2012
  • This study focuses on the state space model and the design of a state observer for the slip dynamics between rolls in STS cold cluster mills. First, a mathematical model of the roll slip is given as a nonlinear differential equation. Then, by using a Taylor series expansion, it is linearized as a state space model. Next, by using Gopinath's algorithm, a minimal-order state observer based on the state space model is designed to estimate the angular speed of all idle rolls except for an actuated roll that is measureable. Finally, a computer simulation is used to validate that the proposed state space model very well describes slip dynamics between, and moreover, the state observer very well estimates the angular speed of the idle roll.

Design of umbrella arch method based on adaptive SVM and reliability concept (Adaptive SVM 기법 및 신뢰성 개념을 적용한 강관다단공법의 설계기법 연구)

  • Lee, Jun S.;Sagong, Myung;Park, Jeongjun;Choi, Il Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.701-715
    • /
    • 2018
  • A reliability based design approach of the tunnel reinforcement with umbrella arch method was considered to better represent the uncertainties of the weak rock properties around the tunnel. For this, a machine learning approach called an Adaptive Support Vector Machine (ASVM) together with the limit equilibrium method were introduced to minimize the iteration numbers during the classification training of the tunnel stability. The proposed method was compared with the results of typical Monte Carlo simulations. It was concluded that the ASVM was very efficient and accurate to calculate the probability of failure having auxiliary umbrella arches and uncertain material properties of the tunnel. Future work will be concentrated on the refinement of the fast adaptation of the SVM classification so that the minimum number of numerical analyses can be used where the limit solution is not available.

Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines (발전용 소형가스터빈의 축류터빈 공력설계)

  • Kim, Joung Seok;Lee, Wu Sang;Ryu, Je Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Doosan Heavy Industries. The design procedure mainly consists of three parts: namely, flowpath design, airfoil design, and 3D performance calculation. To design the optimized flowpath, through-flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and hade angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2D airfoil planar sections are designed carefully, followed by 2D B2B NS calculations. The designed planar sections are stacked along the spanwise direction, leading to a 3D surfaced airfoil shape. To consider the 3D effect on turbine performance, 3D multistage Euler calculation, single row, and multistage NS calculations are performed.

건식 $CO_2$ 포집공정 효율 향상을 위한 열교환형 유동층 반응기 열설계

  • Jo, Hyeong-Hui
    • Journal of the KSME
    • /
    • v.53 no.6
    • /
    • pp.46-50
    • /
    • 2013
  • 유동층기술은 물리반응 공정, 화학반응 공정, 에너지 변환공정 등 다양한 산업 분야에 오랫동안 적용되어 왔다. 이 글에서는 여러 산업분야 중 최근 환경 분야에 적용된 유동층 반응기 설계기술, 특히 건식흡수제를 이용한 다단 $CO_2$ 포집공정용 유동층 반응기 설계를 위한 유동층 열교환기 설계 기술에 대해 소개 하고자 한다.

  • PDF

Development of Design System for Multi-Stage Gear Drives Using Simulated Annealing Algorithm (시뮬레이티드 어닐링을 이용한 다단 치차장치의 설계 시스템 개발)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.464-469
    • /
    • 1999
  • Recently, the need for designing multi-stage gear drive has been increased as the hear drives are used more in the applications with high-speed and small volume. The design of multi-stage gear drives includes not only dimensional design but also configuration design of various machine elements. Until now, however, the researches on the design of gear drives are mainly focused on the single-stage gear drives and the design practices for multi-stage gear drives, especially in configuration design activity, mainly depend on the experiences and 'sense' of the designer by trial and error. We propose a design algorithm to automate the dimension design and the configuration design of multi-stage gear drives. The design process consists of four steps. The number of stage should be determined in the first step. In second step, the gear ratios of each reduction stage are determined using random search, and the ratios are basic input for the dimension design of gears, which is performed by the exhaustive search in third step. The designs of gears are guaranteed by the pitting resistance and bending strength rating practices by AGMA rating formulas. In configuration design, the positions of gears are determined to minimize the volume of gearbox using simulated annealing algorithm. The effectiveness of the algorithm is assured by the design example of a 4-stage gear drive.

  • PDF