• Title/Summary/Keyword: 다공판

Search Result 137, Processing Time 0.021 seconds

The Pressure Drop and Heat Transfer Characteristics of a Direct Contact 4-Stage Fluidized Bed Heat Exchanger (직접 접촉식 4단 유동층 열교환기의 압력손실 및 열전달 특성)

  • 임동렬;박상일;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.325-335
    • /
    • 1992
  • In this work, direct contact 4-stage fluidized bed heat exchanger is experimentally studied to develop a new type of heat exchanger which recovers the energy contained in the high temperature waste gas exhausted from the industrial furnaces. A sand is used as a heat transfer medium in this experiment. To determine the optimum operating condition, 11 different perforated plates which have a different free area ratio with different hole diameter are used in the experiment. From the room temperature experiment, the pressure drop which is caused by fluidized bed formation is observed. The high temperature experiment is carried out to seek the optimum operating condition of high heat efficiency at low heat exchanger operation cost. The results of experiment are as following. The pressure drop in the high temperature condition can be predicted from the results of the room temperature experiment. And Nusselt number becomes smaller due to the increased interference between sand particles as Reynolds number increases when the dilute phase fluidized beds are formed in nigh temperature condition. But heat transfer amount through the total sand surface area become larger due to the large resident amount of sand. Considering the heat transfer amount and the heat exchanger operation cost, perforated plates which have either a 30% or 35% of free area ratio with 15mm of hole diameter are best fitted for our goal of this work. The values of .phi. which is a dimensionless number representing the absorption heat amount per unit sand rate are in the range from 0.4 to 0.5, when Reynolds number of waste gas ranges from 25-30 with these perforated plates.

Numerical Calculations for the Optimal Performance of Regenerative Catalytic Oxidation(RCO) (축열식 촉매 산화(RCO) 반응의 성능 최적화를 위한 전산 해석)

  • Jung, Yu-Jin;Lee, Jae-Jeong;Jung, Jong-Hyeon;Kim, Jin-Uk;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5384-5391
    • /
    • 2011
  • The computational fluid dynamics was analyzed for the pressure distribution, stream velocity distribution, stream line field, retention time and temperature distribution which are applied to the catalyst layer in the RCO reactor to derive the optimum operating condition of the heat condensing type catalytic oxidation (RCO) reactor. The results from the computational analysis revealed that the pressure loss due to the ceramic honeycomb in the catalytic bed of the reactor which is operating currently is not significant and the stream velocity (1.8~2.7 m/s) after the ceramic filter is working in stability without big channeling. To improve the stream velocity distribution of the air stream, it is necessary to extension of the connecting range between the plenum and catalytic bed inside the facility. However, the method of attaching the air stream guide vane or the perforated plate inside the reactor was not so effective.

Numerical Study on the Effect of Reactor Internal Structure Geometry Treatment Method on the Prediction Accuracy for Scale-down APR+ Flow Distribution (원자로 내부 구조물 형상 처리 방법이 축소 APR+ 유동분포 예측 정확도에 미치는 영향에 관한 수치적 연구)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.271-277
    • /
    • 2014
  • Internal structures, especially those located in the upstream of a reactor core, may have a significant influence on the core inlet flow rate distribution depending on both their shapes and the relative distance between the internal structures and the core inlet. In this study, to examine the effect of the reactor internal structure geometry treatment method on the prediction accuracy for the scale-down APR+ flow distribution, simulations with real geometry modeling were conducted using ANSYS CFX R.14, a commercial computational fluid dynamics software, and the predicted results were compared with those of the porous medium assumption. It was concluded that the core inlet flow distribution could be predicted more accurately by considering the real geometry of the internal structures located in the upstream of the core inlet. Therefore, if sufficient computational resources are available, an exact representation of these internal structures, for example, lower support structure bottom plate and ICI nozzle support plate, is needed for the accurate simulation of the reactor internal flow.

Vanadium-doped semi-insulating SiC single crystal growth by using porous graphite (다공성 흑연 소재를 이용한 바나듐 도핑된 반절연 SiC 단결정 성장의 특성 연구)

  • Lee, Dong-Hun;Kim, Hwang-Ju;Kim, Young-Gon;Choi, Su-Hun;Park, Mi-Seon;Jang, Yeon-Suk;Lee, Won-Jae;Jung, Kwang-Hee;Kim, Tae-Hee;Choi, Yi-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.215-219
    • /
    • 2016
  • Vanadium-doped SiC crystals have been grown by using a porous graphite inner crucible filled with vanadium carbide (VC) and by using a porous graphite plate and SiC + VC powders, respectively. Semi-insulating SiC crystals were grown onto the 6H-SiC seed crystals by PVT (Physical Vapor Transport) method. The grown crystals were indicated to be 6H-SiC polytype by XRD. As result of SIMS analysis, vanadium-rich precipitates were observed when the vanadium concentration was relatively higher than the maximum solubility of vanadium ($3-5{\times}10^{17}cm^{-3}$) in vanadium-doped SiC crystals, which resulted in degradation of crystal quality.

Production of Carbon Using Carbonization of Rice Husk in a Fluidized Bed Reactor (유동층반응기에서 왕겨 탄화를 이용한 탄소체 제조)

  • Peng, Meimei;Han, Seung-Dong;Lee, Joo-Bo;Lee, Sung-Yong;Jeong, Ui-Min;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.309-312
    • /
    • 2010
  • 본 연구에서는 유동층반응기를 이용하여 왕겨의 탄화반응을 수행하였다. 탄화반응은 내경 40mm, 높이 1.8m의 유동층을 사용하였으며, 분산판은 다공성 스테인레스스틸을 사용하였다. 탄화반응은 질소를 이용하여 수행하였다. 왕겨 주입입자 크기는 직경 2.0mm, 0.715mm, 0.359mm, 0.194mm를 각각 사용하였으며, 유동층의 온도는 $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$에서 탄화특성을 측정하였다. 또한 유동층의 매질로는 직경 1.0mm의 Co-Mo-Fe/$Al_2O_3$ 촉매를 사용하였으며, 탄화물은 유동층상부에 설치된 사이크론에 의하여 포집 분리 되었다. 탄화온도, 유속, 입자크기 등 조업변수에 따른 생성 탄소체의 물성을 규명하여 최적 조업조건을 제시하였다.

  • PDF

Development of a Trunk Mat for High Acoustic Absorption and Insulation (흡/차음성이 높은 자동차트렁크 매트 개발)

  • Kim, Sung-Ryong;Lee, Byung-Chan;Chang, In-Soo;Cho, Byung-Yeol;Yeon, Ik-Jun;Yeon, Jung-Hum;Lee, Jang-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.288-290
    • /
    • 2010
  • 국산자동차의 품질이 비약적으로 발전하였으나, 주행시나 정차시의 정숙성은 세계최고의 자동차에 비해서는 여전히 취약한 실정이며, 특히 자동차 트렁크에서 발생한 소음과 자동차 하체에서 발생한 소음이 트렁크를 타고 내부에 전달되는 문제가 발생되어 그 해결책이 요구되고 있다. 본 연구에서는 흡 차음이 높은 자동차 트렁크 매트를 개발하는데 목적이 있다. 연구방법으로는 공동연구기업에서 제공한 완제품 형식의 자동차 트렁크 시트와 성형하기 전에 플라스틱판(Board)과 부직포를 이용하여 트렁크 매트의 흡음 및 차음성능을 테스트하였으며, 부직포와 시트의 면밀도를 증가시켜 흡음률과 투과손실의 변화를 살펴보았다. 흡 차음 성능이 높은 자동차트렁크 매트를 개발하기 위하여 부직포와 시트 사이에 다공층을 형성하는 설계를 통하여 매트를 제작하였으며, 개발된 매트의 흡/차음성의 변화를 살펴본 결과 흡음률과 차음도가 기존 제품보다 우수한 것을 확인하였다.

  • PDF

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell (고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.667-673
    • /
    • 2017
  • We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.

Study on the Performance of Total Heat Exchanger with Rotating Porous Plates (다공형 전열판의 회전에 의한 열교환시스템의 성능에 관한 연구(Ⅰ) - 환기측과 외기측의 풍량 변화에 대하여 -)

  • Cho, D.H.;Lim, T.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.11-17
    • /
    • 2005
  • This paper reports an experimental study on the performance evaluation of air-to-air heat exchanger with rotary type newly developed in this study. Air flow rate is varied from 10 to 120 m3/h. The range of RPM of the porous rotating discs mounted inside the heat exchanger unit is 0 to 50. The temperature of the return air side is set by adjusting heat supply at heater. The material of the porous rotating discs is cooper and its thickness is 1.0 mm. The heat transfer rate increased with the increase in air flow rate. It was found that the heat transfer rate, as the temperature of the return air side was increased, was improved due to higher temperature difference. The heat exchange performance increased with the increase in the temperature of the return air side at the conditions of the same RPM. The sensible heat exchange efficiency was maximum 68 to 76 percent, and enthalpy exchange efficiency 64 to 74 percent.

  • PDF

Analysis of Pressure Fluctuation Properties during the Carbonization of Rice husk in a Fluidized Bed Reactor (유동층반응기에서 압력요동특성치를 이용한 왕겨 탄화반응 해석)

  • Han, Seung-Dong;Park, Ji-Heon;Peng, Meimei;Lee, Hwa-Yong;Cha, Wang-Seong;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1237-1240
    • /
    • 2010
  • 본 연구에서는 유동층반응기를 이용하여 왕겨의 탄화반응을 수행하였다. 탄화반응은 내경 40mm, 높이 1.8m의 유동층을 사용하였으며, 분산판은 다공성 스테인레스스틸을 사용하였다. 탄화반응은 질소를 이용하여 수행하였다. 왕겨 주입입자 크기는 직경 2.0mm, 0.715mm, 0.359mm, 0.194mm를 각각 사용하였으며, 유동층의 온도는 $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$에서 탄화특성을 측정하였다. 또한 유동층의 매질로는 직경 1.0mm의 Co-Mo-Fe/$Al_2O_3$ 촉매를 사용하였으며, 탄화물은 유동층상부에 설치된 사이크론에 의하여 포집분리되었다. 탄화시 유동층 내부의 현상을 압력요동을 이용하여 해석하였으며, 압력신호로부터 평균압력, 압력요동의 표준편차, 주진동수, power spectrum density function을 계산하여 층내현상을 해석하였다. 층내온도, 유동화속도, 공급 입자크기에 따른 층내현상을 압력요동특성치를 이용하여 해석할 수 있었다.

  • PDF

Effect of Flow Uniformity Device on the Catalytic Combustor for 5 kW High Temperature Fuel Cell System (5 kW급 고온형 연료전지 촉매 연소기 유동 균일화 장치가 연소 특성에 미치는 영향)

  • Lee, Sang-Min;Woo, Hyun-Tak;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.878-883
    • /
    • 2011
  • Effect of flow uniformity on the reaction characteristics of a catalytic combustor for high temperature fuel cell system has been experimentally investigated in the present study. One of the most important factor in designing catalytic combustion is to avoid hot spot in catalysts. In this regard, it is very important to secure flow uniformity of combustor inlet. A couple of perforated plates were applied at the front of catalyst region as flow uniformity device with minimal pressure drop. Results show that the velocity and temperature profile became more uniform when applying the flow uniformity device. CO and $CH_4$ emissions at the combustor exit were decreased and the average exit temperature was slightly increased with the flow uniformity device.